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Abstract

We introduce umpirical likelihood (UL), a method for statistical inference about tennis officiating developed
by a researcher who knows absolutely nothing about tennis. This ignorance is a feature: it guarantees that the
investigator is impartial, unseeded, and unable to argue about foot-faults, thereby achieving a kind of Platonic
unbiasedness unavailable to people who own head bands. UL handles near-negative sample sizes with élan and
remains valid even when the umpire in atypically mean and cantankerous. This paper is best read courtside,

ideally during a rain delay.

1 Introduction

The inexorable course of technological progress
creates a treadmill for farmers: farm profits stay
relatively low, but the farms continue increasing
in size (Cochrane|1958). In turn, this reduces the
amount of land available for tennis courts, causing
the average size of a tennis court to shrink due to
the reduction of the square metreﬂ what consti-
tutes 1 m? today would be roughly 0.89 m? in 1980
U.S. dollars. In these circumstances, sports statis-
ticians can no longer afford such voluptuous mea-
sures of location uncertainty as asymptotic Wald
confidence regions that flop about like wet towels.
What is needed are sets with correct coverage prob-
ability as tight and upright as an umpire on a high
chair, and there is no better framework to obtain
all quantities of athletic interest, in application to
the game of tennis, than umpirical likelihood (UL)
(Kitamura 2007; Owen |1988). To avoid possible
confusion, we specify that this article is not study-
ing the properties of the closely related empirical
likelihood (DiCiccio, Hall and Romano|1991; Owen
2001), which belongs to the field (no pun intended!)
of e-con-ome-tricks. Finally, we are not considering
the game of baseball because not only European

1t happens through a sophisticated chain of reasoning
involving hedgehogs, wheelbarrows, and a unit conversion
performed by a man with a tape measure and a completely
different tape measure.

researchers appear to be oblivious to the rules of
baseball (Morgan and Lally 2025), they seem not to
care about it at all (Rader|2025).

Therefore, the research question is: how can one
obtain finite-sample, coverage-correct inference
for tennis officiating when samples are comically
small (n < 2) and convex-hull mishaps abound?
Specifically, can one estimate the prevalence of
umpires, construct accurate confidence regions for
their location, and fit small-sample regressions —
potentially with instruments such as whistles and
racquets — to quantify their incompetence?

2 Umpirical likelihood

Umpirical likelihood is a flexible apparatus that
can be used to test statistical hypotheses and es-
timate models. An umpire’s raison d’étre is to
judge the game of tennis and to render umpiri-
cally supported verdicts on the superiority (or non-
inferiority) of one tennis player to another. Op-
erationally, this implies working with samples of
size n < 2 of players who are treated as random
VectorsE] Such tiny samples beg for finite-sample-
oriented machinery rather than asymptotic approx-

2Strictly speaking, no participant on court is virus-free or
bacteria-free; therefore, anyone, including the umpire, is a
potential disease vector, so the terminology is virologically
unobjectionable.



imations.

In tennis, there are two types of umpires:
line umpires and chair umpires (who adjudicate
points); the latter have even fewer dimensions to
their personality. This implies the possible exis-
tence — presumably in dimensions higher than 2 —
of largely under-studied simplex umpires. As we
shall soon demonstrate, this taxonomy dovetails
neatly with the geometry of an umpire’s convex hull
—a shape no amount of foot-faults can flatten.

2.1 Umpirical likelihood for frequen-
cies

Our opening serve is to estimate the prevalence
of umpires in a given territory — a discrete ana-
logue of the closely related colonel density estima-
tion (Krishna et al. 2017). Let the region of interest
(square kilometre, parliamentary constituency etc.)
be partitioned into I primary sampling units (PSU):
districts, parishes, sports-centre canteens, arena
lavatories etc. A PSU i has population size N; and
contains an unknown number of umpires U;. Not
all umpires are observed directly because some
of them might be on holiday or officiating other
sports.

Assume (1) simple random sampling within each
PSU, and (2) independence of PSUs (no Wimble-
don fortnight simultaneously sweeping half the
globe and no masterclass tours by Roger Federer,
which would necessarily create cross-sectional de-
pendence). Then, select n; individuals uniformly
at random from each PSU (cluster sampling with
equal weights). For every person j =1,...,n;, ask
the only question that matters: Art thou an um-
pire?’. Encode

1,
Wi = 0

Because the W;; are i.i.d. Bernoulli(p;) inside
each PSU, the sample proportion

if the respondent is an umpire;
otherwise.

|
— > Wi

pi=

ni =
is a maximiser of the profile UL and an unbiased es-
timator of the true proportion; by the stroke law of

large numbers, p; a5, pi as n;j — oo. The implied

probabilities are uniform (navy blazers, crisp white
trousers, or bias-cut skirts)ﬂ i.e. equal 1/n. This
estimator is consistent, but, as with all sample av-
erages, its break-point is equal to zero: the absence
of a single umpire (W;; = 0 Vj for a given i) may
drive the estimated probabilities to zero, invalidat-
ing further analyses. This problem can be resolved,
e.g., by the methods mentioned in Section [6]

3 Mean umpirical likelihood con-
fidence

In the previous section, we assumed that
umpires are locally ii.d. (independent and
indistinguishably dressed); this property forms the
basis of umpirical-likelihood-based inference. Alas,
the mean umpire location is a highly non-linear
function of their characteristics: speed, acceler-
ation, previous location etc. By the Heisenberg
uncertainty principle, the more precisely we pin
down an umpire’s velocity (usually 0.000...0 with
at least 16 digits of precision, pushing the limits
of the IEEE 754.38000000000000004 arithmetic),
the fuzzier their posterior location becomes (even
Hawkeye starts blinking at that point). However,
probabilistic location measures can be constructed
for a certain class of umpires.

Theorem 1 The confident umpire is convex with
probability exceeding 99% if and only if the body
mass index (BMI) of the umpire is greater than or
equal to 40. 0

PROOF The proof of the pudding is — quite literally
— in its eating, and surely, umpires with BMI > 40
must be having a diet rich in hearty and robust
sandwiches-with-tomatoes (also containing meat
in the middle). The extra girth smooths every local
dent, forcing the confidence region to inherit the
umpire’s own rotund convexity. -

Corollary 1 A sufficiently corpulent umpire is
equal to their own convex hull.

PROOF The proofis elementary: as BMI — oo, the
shape of an umpire tends to a metric ball, and any
ball is a convex set. m

3Modern methods allow de-biasing to a degree; see Cher-
nozhukov et al. (2018) for a practical guide on de-biasing
doubles.



This property is illustrated in Figure |1} For the
lanky umpire (left), the fraction of points that land
on their convex-hull boundary is 1.5%. For the
obese counterpart (right), the figure rises to 2.8%.
Drawing on Hart, Rinott and Weiss (2008), we recall
that heavy-tailed, sparse clouds (sub-exponential,
to be specific), as in the left panel, drive the ex-
pected number of hull vertices toward 4, whereas
leptokurtic, centre-heavy clouds inflate the ex-
pected cardinality of the set of convex-hull vertices
without bound as the point count grows.

Figure 1: Convex-hull boundaries for a normal-
sized (left) and a generously proportioned (right)
umpire

Finally, the hypothesised point at which an
umpire is the meanest must be spanned by the
columns of the umpire’s moment values (e. g. the
vertebral Columnf‘_r] colon(s) etc.). If the true mean-
ness location is outside their convex hull, it is like a
player walking off the court — the umpirical likeli-
hood cannot make a call. In such cases, a spanning-
condition violation is registered, invoking the Span-
ning Inquisitionﬂ

4 Umpirical likelihood for re-
gression estimation

It is no surprise that the art of officiating is on the
decline: mis-calls soar, bribe offers balloon, and

“Spineless umpires tend to have exactly one fewer degree
of freedom.
SNobody expects the Spanning Inquisition.

the global stock of sober umpires dwindles. There-
fore, to model this regression and decadence in
the umpirical domain, one may employ a hedonic
function of umpires’ internal traits (height, weight,
intelligence quotient) and external stressors (infla-
tion rate at the home address, per-capita GDP, net
income from re-selling used nets etc.).

As per the ITF rules (International tennis feder-
ation 2012), up to 11 umpires may be present on
a court simultaneously. Therefore, the setting is
nowhere close to the ideal ‘n — oo’ scenario. Luck-
ily, umpirical likelihood can provide reliable infer-
ence even in small samples.

Assume that the amount of unfair arbitrament
is so vast, it may be treated as a continuous depen-
dent variable. Then, the population moment re-
striction in this case isEXe =0, wheree:= Y — X'0
is the model error, Y represents the number of
wrong decisions made by an umpire and X is the
vector of explanatory Variablesﬁ Then, for any 6,
the umpirical-likelihood estimator solves

n
maxR(@), R(0):=max}_logp;

b=l

pi=z0 Vi=1,...,n,
er'lzl pPi= 1,
Y piXi(Yi— X16) = 0.

S. t.

Once the likelihood has been maximised with
respect to 0, one may carry out tests to check the
robustness of an umpire.

One such possible procedure is the goodness-of-
foot test: a chi-square test where the cells corre-
spond to shoe sizes. Reject the null hypothesis if
the observed foot-size distribution is inconsistent
with ‘Net World Sports’ equipment catalogues. Ac-
cording to the Neyman-Pearson lemma, this test is
universally most powerful (UMP).

Confidence intervals for umpirical-likelihood re-
gression parameters may be asymptotic or data-
driven. The latter admits a ball-let correction (not to
be confused with the Bartlett correction): the mul-
tiplicative adjustment factor (1 + b,,) for the critical
levels of the y? distribution equals the empirical
rate of ‘let’ serves. However, using this b, factor
is challenging because qualifying-round matches

Here, X contains the constant regressor because umpires
tend to regress constantly.



(with many lets) produce ball-let factors so large
that the null hypothesis is never rejected — thus
protecting unconfident rookies.

The second approach is the bootstrap of justice.
Resample entire point sequences; each replicate
yields an alternate universe in which the Wimble-
don 2018 semi-final ends differently. The across-
replicate variance is the ‘variance of justice’ that
may be used in ¢-tests. For (1 — a) confidence in-
tervals, find the ump-teenth and one-minus-ump-
teenth quantiles of the bootstrap distribution; note
that confidence intervals widen dramatically for
players nicknamed ‘The Djoker’.

To test the unbiasedness of an umpire, one may
conduct the Hellinger-Hawkeye distance test: com-
pute the Hellinger distance between the distribu-
tion of ball-impact spots predicted by the umpire
and the one logged by Hawkeye. Disqualify any
umpire whose HHD exceeds i\/ﬁ

4.1 Alternative moment constriction
sets

It is possible to estimate the health regression for
umpires where the outcome variable is the face
redness representing a proxy for cardio-vascular
strain. Simply replace the previous moment restric-
tion with a vasoconstriction and add the BMI to X;.
Because BMI might be endogenous to health out-
comes, instrument it with:

* Number of stadium stairs to the chair: more
steps per match = higher daily energy expen-
diture = lower BMI (stadium architecture is
fixed long before the match);

e Per diem meal voucher value randomly as-
signed by the tournament: bigger voucher
= higher calorie intake during the fortnight
(voucher amounts are set by logistics staff, not
by umpires, and affect health only via body
mass);

* Ambient court temperature: hotter courts in-
duce greater perspiration and appetite sup-
pression (temperature affects health chiefly
through hydration/BMI).

All of these instruments should be relevant and,
unless a heat wave secretly bribes the line judges,
satisfy the exclusion restriction.

4.2 Umpirical livelihood

The linear-regression approach can be used to fit a
Mincer-style semi-log wage equation (Mincer 1958)
for umpires. An umpire’s yearly income may be
considered an estimating equation, with explana-
tory variables including years of professional um-
piring experience (tenure effects), highest ITF cer-
tification tier, matches officiated in the past season
(work-intensity proxy), Grand-Slam assignment
dummy (premium for marquee events), and body-
mass index and its square (the parabola vertex cor-
responding to the optimum between the ‘lean and
spry’ and ‘too round to climb the chair’ effects).

Once the data on umpires’ observable character-
istics have been harvested, one may introduce addi-
tional paramedic assumptions (such as ‘no umpire
has to be carried away on a stretcher mid-match
due to a sunstroke/head-shot by a ball’) to con-
struct Lorenz curves for earnings diagnostics. So
far, the majority of studies have shown that the rich-
est 1% of umpires own 90% of the wind-breaker
nets.

A similar model can be estimated for a limited
dependent variable: um- Pyrrhic likelihood. It can
be used to estimate the probability of an umpire
awarding a consolation match point after a player
suffers a serious injury (tearing a ligament or a mus-
cle, breaking a bone, psychological damage from
breaking a racquet etc.).

5 Umpirical likelihood exten-
sions

Penalty box constraints (wait, wrong sport).
Players caught bending the rules of tennis (using
loaded balls to maximise damage, bribing the offi-
cials etc.) are confined to an immobile (1 x 1)-m?
penalty box at the baseline. Each additional infrac-
tion shrinks the square by a factor of 7 < 1; repeated
violations of the rule may be punished by throw-
ing lumps of coal into the box of the guilty player,
producing the famous Box—Cokes transformation.
This approach is numerically more complicated
as it requires a special adaptive-barrier algorithm,
further complicating umpirical decisions when the
ball hits the penalty box.



Exponential tilting of the racquet (literally). An-
gling the racquet by n degrees during serve cor-
responds to introducing an exponential tilt pa-
rameter y = tann in the UL dual problem. The
corresponding moment constraints are based on
the signed impact vectors of the ball: every
serve must satisfy Y- , p;g(X;,0) =0, where p; o
expy'g(X;,0) and g(X;,0) records the horizon-
tal ‘slice’ and vertical ‘kick’ of the i delivery.
This approach remains robust to mild model mis-
specification, such as a sudden teleportation of an
umpire into a ping-pong match.

Penalised high-dimensional racquet likelihood.
This UL variant is useful when dim6 > n owing to
a LASSO/Ridge-type penalisation. When every pos-
sible racquet customisation (string tension, frame
stiffness, grip size) is treated as a co-variate, an ¢
penalty should be added to shrink illegal racquet
tweaks (plutonium strings, serrated edges) to zero,
leaving only ITF-approved features active.

6 Future research

Umpirical likelihood has long provided data-driven
gestational comfort to statisticians. However, the
asymptotic convexity of UL regions under rather
general assumptions has a surprising link to ob-
stetrics. The motivating example is an old Luxem-
bourgish mnemonic used to teach the concepts of
concavity and convexity to adolescents:

Wann ass e Meedche bray,
Ass sdi Bauch konkav;
Wann huet e Meedche [e*,
Ass sdi Bauch konvex.

We cut the cord and propose umbilical like-
lihood, a variant of empirical likelihood (Powell
2020). It inherits the Bartlett C-section of UL, with
the extra convenience that the convex hull of the
data coincides with the amniotic sac encasing the
foetus.

In this approach, percentile bootstrap is replaced
with placenta bootstrap. Instead of sampling ob-
servations with replacement, we resample while
replacement occurs. The algorithm stops when the
attending statistician declares ‘full term’. Its linear

cousin is the leave-one-chromosome-out (but-do-
not-forget-to-put-it-back) jack-knife.

For statistical inference, APGAR-95% confidence
scores may be employed: each confidence interval
is graded 0-10 (on the Bristol scale) on appearance,
pulse, grimace etc.; any interval scoring below 7
triggers an emergency F calibration.

All experiments on live subjects need, of course,
to receive the Institutional Labour Board approval
—a hurdle so high, it regularly puts researchers into
labour.
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