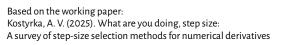
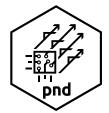
Make a difference: fast and accurate **numerical** derivatives with **pnd**





Andreï V. Kostyrka

11^{èmes} Rencontres R Université de Mons 20 mai 2025

UNIVERSITÉ DU LUXEMBOURG

Department of Economics and Management (DEM)

Presentation structure

1. Motivation and use cases

2. Approximations of analytical derivatives

3. Step-size selection algorithms

4. Showcasing pnd

Motivation and use cases

Contribution

- I wrote an R package pnd for fast, parallelised numerical differentiation
 - First open-source parallel Jacobians, Hessians and higher-order-accurate gradients in R
 - I implemented 6 algorithms for step-size selection and benchmarked their performance
 - · You will see this benchmark
- 2. I am currently working on 3 papers on the topic: a survey and two algorithmic ones
 - Working paper: Kostyrka, A. V. Step size selection in numerical differences using a regression kink. *Department of Economics and Management discussion paper 2025-09*, University of Luxembourg. https://hdl.handle.net/10993/64958

Motivation

- Researchers rely on optimisers, algorithms, black boxes etc., and the end result depends on the solver quality
- Most popular modern optimisation techniques use numerical gradients for minimisation or maximisation

However, most software implementations yield **inaccurate** and **slow** numerical derivatives.

Consequences: inexact solutions, negative variances, invalid statistical inference etc.

Example from a financial application

AR(1)-GARCH(1, 1) model for NASDAQ log-returns, 1990–1994:

$$\mathbf{r}_{t} = \mu + \rho \mathbf{r}_{t-1} + \sigma_{t} \mathbf{U}_{t}, \quad \sigma_{t}^{2} = \omega + \alpha \mathbf{U}_{t-1}^{2} + \beta \sigma_{t-1}^{2}$$

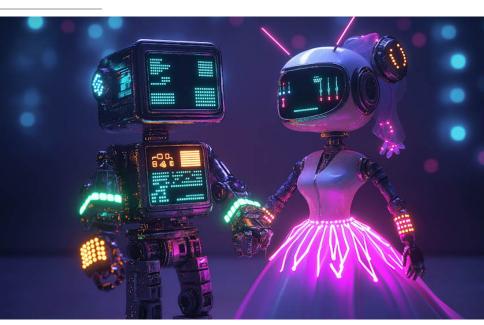
Coefficient	Est.	<i>t</i> -stat	<i>t-</i> stat
		rugarch	fGarch
μ	0.0007	2.34	2.31
ho	0.24	7.77	7.73
$\omega imes 10^3$	0.0098	NaN or 65 default fallback	3.09
α	0.13	11.1	4.27
β	0.73	39.6	10.9

NaN due to negative variance!

Existing literature / software

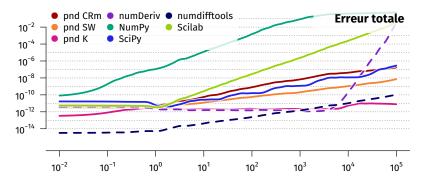
- Gilbert & Varadhan (2019). **numDeriv**: Accurate Numerical Derivatives.
 - cran.r-project.org/package=numDeriv
 - \cdot $\,$ Non-parallel version without vignettes or derivations
- Gerber & Furrer (2019). optimParallel: An R Package Providing a Parallel Version of the L-BFGS-B Optimization Method. *The R Journal* 11 (1).
 - cran.r-project.org/package=optimParallel
 - · Limited to the built-in optim(method = "L-BFGS-B")
- Algorithms for numerical derivatives from the 1970s have remained dormant... until now

Marrying numDeriv + optimParallel functionality



Selling point of pnd

Compare the software: numerical derivative error for $f(x) = \sin x$ on an exponentially spaced grid between 0.01 and 10 000.

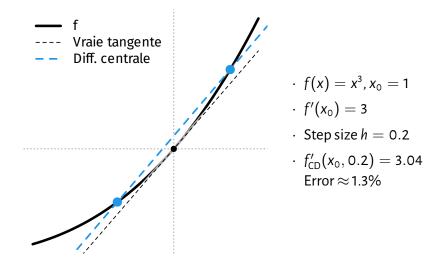


Solid: 2 evaluations, dashed: >2 evaluations (incomparable).

Fast and accurate numerical derivatives with pnd. A. V. Kostyrka, Rencontres R @ UMONS, 2025-05-20

Approximations of analytical derivatives

Derivative estimation via central differences



Higher-order accuracy of first derivatives

Better accuracy is achievable with more function evaluations. Carefully choose the coefficients to eliminate the undesirable terms:

$$f' = \underbrace{\frac{-f(x-h) + f(x+h)}{2h}}_{f'_{\text{CD},2}} + O(h^2)$$
$$f' = \underbrace{\frac{f(x-2h) - 8f(x-h) + 8f(x+h) - f(x+2h)}{12h}}_{f'_{\text{CD},4}} + O(h^4)$$

- pnd::fdCoef() computes stencils and weights for arbitrary derivative orders and accuracy orders
- · These 4 evaluations can and should be parallelised

Fast and accurate numerical derivatives with pnd. A. V. Kostyrka, Rencontres R @ UMONS, 2025-05-20

Efficient parallelisation of gradients

Example: $\nabla f(x_{3\times 1})$, evaluation grid $\{x \pm h, x \pm 2h\}$ for 4th-order accuracy. Total: 12 evaluations.

$$\begin{array}{c|ccccc} & w_1 = \frac{1}{12} & w_2 = -\frac{8}{12} & w_3 = \frac{8}{12} & w_4 = -\frac{1}{12} \\ \hline x^{(1)} & f(x - 2h_1) & f(x - h_1) & f(x + h_1) & f(x + 2h_1) \\ x^{(2)} & f(x - 2h_2) & f(x - h_2) & f(x + h_2) & f(x + 2h_2) \\ x^{(3)} & f(x - 2h_3) & f(x - h_3) & f(x + h_3) & f(x + 2h_3) \end{array}$$

- · Create a list of length 12 containing $x + b_j h_i$
- Apply f in parallel to the list items, assemble $\{\{f(x + b_jh_i)\}_{i=1}^3\}_{j=1}^4$ in a matrix
- Compute weighted row sums

Step-size selection algorithms

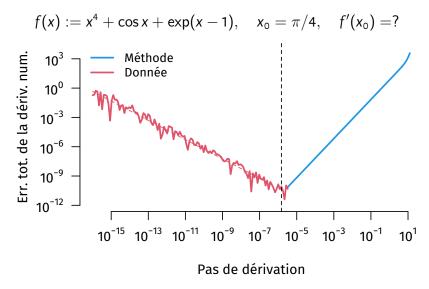
Total error in numerical derivatives

Step size selection is critical for accuracy:

- · h too large \rightarrow large **truncation error** from the remainder Taylor-series term (poor **mathematical** approximation)
- · *h* too small → large **rounding error** (poor **numerical** approximation): catastrophic cancellation, division of something small by something small, machine accuracy limited by ϵ_{mach}
- $\cdot h$ near-optimal \rightarrow the two errors are balanced

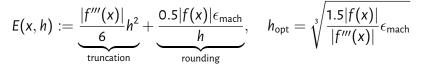
One good step size with one difference is better than 3 bad step sizes with refinements and extrapolations!

Approximation error to minimise



Using the analytical error estimate

Total-error function: conservative absolute-error bound.



• Estimate f'''(x) using any reasonable \tilde{h} (e.g. 0.001)

Grad(FUN = f, x = x0, h = "plugin")

• Dumontet–Vignes (1977) proposed an iterative search algorithm for a better estimate of f'''(x)

Grad(FUN = f, x = x0, h = "DV")

Observation: when the truncation error and the rounding error are similar, the total error is close to minimal.

Curtis & Reid (1974) proposed choosing h such that

 $\frac{\text{over-estimated } e_{\text{trunc}}}{e_{\text{round}}} \in [10, 1000] \qquad (\text{rule of thumb: 100})$

 $e_{
m trunc} \approx {
m forward minus central differences (too conservative!),} e_{
m round} \approx 0.5 |f(x)| \epsilon_{
m mach}/h$. The RoT ensures that $e_{
m trunc} \approx e_{
m round}$.

· I created a modified variant with more accurate estimates

Controlling the truncation-branch slope

Stepleman & Winarsky (1979) and Mathur (2012) propose similar algorithms based on the idea of descending down the right branch of the estimated combined error:

- \cdot The slope of the right branch of the combined error is a
- Choose h_0 large enough, set $h_1 = 0.5h_0$, get the truncation error estimate from $f'_{CD}(x, h_1)$ and $f'_{CD}(x, h_0)$
- $\cdot\,$ Continue shrinking while the slope of the truncation branch is \approx 2; stop when it deviates due to the substantial round-off error

Grad(f, x = x0, h = "SW")
Grad(f, x = x0, method = "M")

The total error looks (in logarithmic axes) like the letter 'V':

- The left, rounding branch is due to division by $h^d \Rightarrow$ slope = -d
- The right, truncation branch is due to the remainder in the Taylor series that is approximately a multiple of $h^a \Rightarrow$ slope = a

Fit a check function (\checkmark) with known slopes -d and a and unknown horizontal and vertical shifts to find the approximate minimum of the error.

Grad(f, x = x0, h = "K") # For "kink"

Showcasing pnd

numDeriv remains the most popular R package for non-parallel computation of accurate derivatives without step-size selection.

Simply replace the first lowercase letter with an uppercase one.

numDeriv	pnd	
<pre>grad(f, x)</pre>	<pre>Grad(f, x)</pre>	
<pre>jacobian(fvector, x)</pre>	<pre>Jacobian(fvector, x)</pre>	
<pre>hessian(fscalar, x)</pre>	<pre>Hessian(fscalar, x)</pre>	

User-friendliness and thoroughness of pnd

pnd

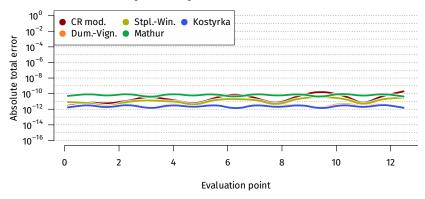
- · Catches 74 errors (so far)
- Prints 44 foreseen warnings (so far)
- Supports 5 possible configurations of function properties and capabilities
 - Multi-stage input checks with error handling and possible parallelisation
- · Handles arbitrary stencils

numDeriv

- \cdot 19 errors
- · Zero foreseen warnings
- Only 3 possible function configurations
 - One-stage input check, only one error check
- Impossible to obtain Jacobians for certain functions (e. g. $f(x) := (\sin x, \cos x)')$
 - · No user controls

Error of step-selection methods for $f(x) := \sin x$

Evaluation grid: $x \in [0.1, 12.5]$, 10 000 points.



The orange line is obstructed by the blue one.

- $\cdot\;$ Test improvements for the step-size selection algorithms
- Add memoisation to reuse function values for more accurate derivative estimates
- · Respond to users' failing examples and fix bugs
 - $\cdot~$ Unit tests < user feedback and reproducible errors

Practical recommendations

Do not:

- Set step size h = 0.01
 because it 'feels right' or you interpret a 1-¢ change
- Use forward differences when evaluating *f* is fast
- Request 24 cores for quick functions (overhead!)
- Skip step-size search when gradients are the object of interest

Do:

- Supply function information to skip checks GenD(..., elementwise = ..., vectorised = ..., multivalued = ...)
- · Use optimal-step search
- Use all CPU cores only if *f* takes longer than 0.02 s
 - On Windows: create a cluster and pass it to Grad() / Jacobian()

github.com/Fifis/pnd
andrei.kostyrka@gmail.com

Function and its derivative accuracy comparison

- The vast majority of function evaluations on a computer are lossy due to finite memory, even linear transformations
 - $\cdot~$ Each operation typically adds a $\,\approx 10^{-16}$ relative error (at least)
- Numerical derivatives are **much less accurate** than function values
 - \cdot ...by a factor of \approx 100 000 in the best case!
 - $\cdot \,$ Many software packages settle for a $\times 10\,000\,000$ accuracy degradation
 - $\cdot \,$...which is worse $\,\approx\!\!$ 100 times than it could have been

Non-existent literature / software

- Most modern articles focus on ultra-high-dimensional numerical gradients with much fewer evaluations
 - Only one (!) paper (Mathur 2012, Ph. D. thesis) with a comprehensive treatment of the classical case useful for low-dimensional models
- Existing algorithms (Curtis & Reid 1974, Dumontet & Vignes 1977, Stepleman & Winarsky 1979) lack open-source implementations
 - Popular software packages implement very rough rules and do not refer to any optimality results in the literature
- Most implementations of higher-order and cross-derivatives are through repeated differencing
 - · Slower and less accurate than a one-time weighted sum

Partial solutions

- · R packages numDeriv and optimParallel
 - numDeriv: the most full-featured arsenal in terms of accuracy, but slow; optimParallel: speed gains but no focus on accuracy
- · Python's numdifftools
 - · Discusses Richardson extrapolation; no error analysis
- · MATLAB's Optimisation Toolboxxt
 - · Focuses on parallel evaluation, not accuracy
- · Stata's deriv
 - · Implements a step-size search to obtain 8 accurate digits

Higher-order accuracy of *m*th-order derivatives

Stencil: strictly increasing sequence of real numbers: $b_1 < ... < b_n$. (Preferably symmetric around 0 for the best accuracy.) Example: b = (-2, -1, 1, 2).

Derivatives of any order *m* with error $O(h^a)$ may be approximated as weighted sums of *f* evaluated on the **evaluation grid** for that stencil: $x + b_1h, \ldots, x + b_nh$.

With enough points (n > m), one can find such weights $\{w_i\}_{i=1}^n$ that yield the a^{th} -order-accurate approximation of $f^{(m)}$, where $a \le n - m$:

$$\frac{\mathrm{d}^m f}{\mathrm{d} x^m}(x) = h^{-m} \sum_{i=1}^n w_i f(x+b_i h) + O(h^a)$$

Gradient of a function

Gradient: column vector of partial derivatives of a differentiable scalar function.

$$\nabla f(\mathbf{x}) := \begin{pmatrix} \frac{\partial f}{\partial \mathbf{x}^{(1)}}(\mathbf{x}) \\ \vdots \\ \frac{\partial f}{\partial \mathbf{x}^{(d)}}(\mathbf{x}) \end{pmatrix}$$

- Vector input x + scalar output f = vector ∇
- At any point x, the gradient the *d*-dimensional slope is the **direction and rate of the steepest growth** of *f*

'A source of anxiety for non-mathematics students.' J. Nash, 'Nonlinear Parameter Optimization' (2014).

Jacobian of a function

Jacobian: Matrix of gradients for a vector-valued function f. If dim x = d, dim f = k,

$$\nabla f(\mathbf{x}) := \left(\frac{\partial f}{\partial \mathbf{x}^{(1)}}(\mathbf{x}) \quad \cdots \quad \frac{\partial f}{\partial \mathbf{x}^{(d)}}(\mathbf{x}) \right)_{k \times d} = \left(\begin{array}{c} \nabla^{T} f^{(k)}(\mathbf{x}) \\ \vdots \\ \nabla^{T} f^{(k)}(\mathbf{x}) \end{array} \right)_{k \times d}$$

- Vector input x + vector output f = matrix ∇
- In constrained problems, most solvers (e. g. NLopt) for $\min_x f(x)$ s. t. g(x) = 0 require an explicit $\nabla g(x)$

Including incorrectly computed derivatives (mostly gradients or Jacobian matrices) <...> explains almost all the 'failures' of optimisation codes I see. (Idem.) **Hessian:** Square matrix of second-order partial derivatives of a twice-differentiable scalar function.

$$\nabla^{2}f(\mathbf{x}) := \left\{ \frac{\partial^{2}f}{\partial \mathbf{x}^{(i)}\partial \mathbf{x}^{(j)}} \right\}_{i,j=1}^{d} = \begin{pmatrix} \frac{\partial^{2}f}{\partial \mathbf{x}^{(1)}\partial \mathbf{x}^{(1)}} & \cdots & \frac{\partial^{2}f}{\partial \mathbf{x}^{(1)}\partial \mathbf{x}^{(d)}} \\ \vdots & \ddots & \vdots \\ \frac{\partial^{2}f}{\partial \mathbf{x}^{(d)}\partial \mathbf{x}^{(1)}} & \cdots & \frac{\partial^{2}f}{\partial \mathbf{x}^{(d)}\partial \mathbf{x}^{(d)}} \end{pmatrix} (\mathbf{x})$$

The Hessian is the transpose Jacobian of the gradient:

$$\nabla^2 f(\mathbf{x}) = \nabla^{\mathsf{T}} [\nabla f(\mathbf{x})]$$

- Vector input x + scalar output f = matrix ∇^2
- \cdot If abla f is differentiable, $abla_f^2$ is symmetric

Numerical Hessians via central differences

Let
$$h_i := (0 \dots 0 \underbrace{h}_{i^{\text{th}} \text{ position}} 0 \dots 0)'$$
 and $x_{+-} := x + h_i - h_j$.

4 evaluations of f are required to approximate $\nabla_{ij}^2 f$ via CD:

$$\nabla_{ij}^{2}f(x) := \left[\nabla^{T}(\nabla f(x))\right]_{ij} := \nabla_{ij,CD}^{2}f(x) + O(h^{2}) = \frac{f(x_{++}) - f(x_{-+}) - f(x_{+-}) + f(x_{--})}{4h^{2}} + O(h^{2})$$

- The 4-term sum is as **fast** as the 4-term $\frac{\nabla_i f(x+h_j) \nabla_i f(x-h_j)}{2h_j}$, but guaranteed to be **symmetric**: $\hat{\nabla}_{ij,CD}^2 = \hat{\nabla}_{ji,CD}^2$,
 - · Symmetric repeated differences require 8 terms
- · Accuracy implications are being investigated

On the log-log scale,

- The slope of the left branch is the differentiation order m (times -1)
 - \cdot The rounding error of the difference is divided by h^m
- \cdot The slope of the right branch is the accuracy order a
 - The truncation error is approximately f''.../a! times h^a

Optimal step tips and tricks

Rules of thumb to help one save time and obtain more useful quantities once they have determined $h_{\rm CD,2}^*$ "

- Since h^{**}_{CD,2} ∝ ε^{1/4}_{mach}, h^{*}_{CD,2}/h^{**}_{CD,4} ∝ ε^{1/12}_{mach}.
 Multiply h^{*}_{CD,2} by ≈20 for a reasonable step size for second derivatives (f")
 - · Logic: higher derivation order ⇒ division by h^2 instead of h ⇒ higher rounding error ⇒ increasing h^* to reduce it
- Similarly, $h_{CD,4}^* = \propto \epsilon_{mach}^{1/5}$, $h_{CD,2}^* / h_{CD,4}^* \propto \epsilon_{mach}^{2/15}$. **Multiply** $h_{CD,2}^*$ by \approx 100 for a reasonable step size for **4th-order-accurate first derivatives** (f' but better)
 - Logic: higher approximation order \Rightarrow more points \Rightarrow smaller truncation error at $h^*_{CD,2} \Rightarrow$ increasing h^* to reduce the rounding error

Optimal step troubleshooting

- · If the function is quasi-quadratic, $f''' \approx 0, f'''' \approx 0, ...,$ then, the step-size search might be unreliable
 - $\cdot\;$ Happens at the optima of likelihood functions in large samples
 - · Solution: use the fixed step $\sqrt[3]{\epsilon_{mach}} \max\{|x|,1\}$ after checking diagnostic messages
 - Typical error: step size too large after dividing by f''', solution at the search range boundary, or solution greater than |x|...
- If the function is noisy / approximate, multiply $h^*_{\rm CD,2}$ by 10 per 3 wrong digits of f
 - If f(x) has numerical root search, optimisation, integration, differentiation, etc., $|f(x) \hat{f}(x)| / |f(x)| \ge 0$ by more than ϵ_{mach}
 - In general, replace $\epsilon_{\rm mach}$ in the total-error formula with the maximum expected relative error $\Rightarrow h$ becomes larger with more wrong decimal digits

- 1. Theoretical (plug-in expressions)
- 2. Empirical (finding the minimum of the total error)

pnd, provides multiple algorithms (currently under active feature implementation and testing).

Analogy: Silverman's rule-of-thumb bandwidth vs. data-driven cross-validated bandwidth in non-parametric econometrics.

Overhead magnitude

- $\cdot\,$ Requesting 2 cores for a parallel job: \approx 0.01 s
 - $\cdot~$ 0.3–0.4 s on Windows due to its inability to fork effectively!
- $\cdot~$ Extra per-core time with pre-scheduling: \approx 0.005 s
 - $\cdot~$ Plus extra time losses for communication between cores
- If one evaluation of *f* takes <0.01 s, compare the gains: reduction of the number of tasks vs. overhead per core
- If one evaluation of *f* takes 0.005–0.010 s, compare the gains: reduction of the number of tasks vs. overhead per core

Time per f	0.002	0.005	0.01	0.02	0.05	0.1	> 0.2
Use cores	1	2–3	4	8	12	16	\geq 24

Long gradients \Rightarrow always parallelise! And **always benchmark**!

Overhead of pnd

How faster is calculating $\frac{f(x+h)-f(x-h)}{2h}$ by hand than running dozens of checks for user inputs?

Each call of Grad() adds 0.5 ms of overhead due to the infrastructure; it increases with dim x. (*To be improved*!)

Compare the overhead of computing $\nabla f'_{CD,2}$ for $f(x) := \sum_{i=1}^{\dim x} x^2 + 4 \sin x + 1.1^x$ in seconds:

dim X	1	10	100
Overhead	0.0005–0.0010	0.0008-0.0010	0.0038–0.0041

Is it acceptable in your practical application?

Fast and accurate numerical derivatives with pnd. A. V. Kostyrka, Rencontres R @ UMONS, 2025-05-20

Example: overhead in light functions

If there are no memory-heavy operations (cloning pages, passing data to child processes), the run time is roughly proportional to the number of cores.

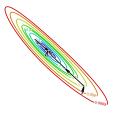
f(x) <- {Sys.sleep(s); sin(x)}</pre>

Times for the Stepleman–Winarsky algorithm to terminate in 7 evaluations / 3 iterations. Ideally, 3 iterations = 3 parallel calls = thrice the time of one call.

S	0.001	0.01	0.1	1
1 core	0.008	0.072	0.702	7.003
2 cores	0.038	0.091	0.456	4.061
3 cores	0.043	0.092	0.368	3.071

Example: slow functions

Smoothed empirical likelihood with missing endogenous variables (Cosma, Kostyrka, Tripathi, 2025). Maximising SEL + computing ∇^2 -based std. errors via BFGS on 4 cores.



Method	Ord.	Time, s	$\ abla SEL\ $	Evals	lters
built-in	2	21+3.8	$3.6 \cdot 10^{-4}$	46	10
pnd	2	13+1.5	$2.1 \cdot 10^{-7}$	37	10
pnd	4	16+2.9	$3.3 \cdot 10^{-8}$	32	10

Fast and accurate numerical derivatives with pnd. A. V. Kostyrka, Rencontres R @ UMONS, 2025-05-20

- 1. Plug-in
- 2. Curtis-Reid (1974) and its modification (2025)
- 3. Dumontet-Vignes (1977)
- 4. Stepleman–Winarsky (1979)
- 5. Mathur (2012)
- 6. Kostyrka (2025)

Improvements for the CR algorithm

- 1. Estimate the correct truncation error order with 4 parallel evaluations and use the theoretically correct target ratio
 - Instead of 'truncation error = rounding error', use the optimal 'truncation error = rounding error **halved**' rule
- 2. Obtain $f'_{CD,4}$ with algorithmically chosen $h^*_{CD,2}$ times 120
 - $~\cdot~\approx$ 3 times more accurate than theoretical

Developed by Ravishankar Mathur (2012, Ph .D. thesis).

- The finite differences may be evaluated on the entire grid on a multi-core machine
- The user may plot the behaviour of the approximated total error as an added bonus

Comparison of median run times

Grid: 9000 exponentially spaced points between 10^{-3} and 10^{6} (exception: 3000 points in $[10^{-2} \dots 10^{1}]$ for exp x).

Unit: millisecond per step size per grid point + derivative estimation.

Func.	$h^*_{\rm CD,2}$	$ x \sqrt{\epsilon_{mach}}$	CR	CRm2	CRm4	DV	SW	М
sin x	<0.01	<0.01	0.18	0.16	0.20	0.46	0.33	1.70
exp x	<0.01	0.02	0.15	0.15	0.15	0.26	0.18	1.72
log x	<0.01	0.01	0.15	0.11	0.15	0.17	0.27	2.09
\sqrt{x}	<0.01	<0.01	0.16	0.11	0.15	0.16	0.14	2.13
$\tan^{-1} x$	<0.01	<0.01	0.14	0.11	0.17	0.19	0.42	1.69

Comparison of median absolute errors

Error: $|f'(x) - f'_{CD,2}|$ for 9000 exponentially spaced points between 10^{-3} and 10^{6} (exception: 3000 points in $[10^{-2} \dots 10^{1}]$ for exp *x*).

Short exponential notation: $5.6e - 9 = 5.6 \cdot 10^{-9}$.

Func.	$h^*_{\rm CD,2}$	$ x \sqrt{\epsilon_{ ext{mach}}}$	CR	CRm2	CRm4	DV	SW	М
sin x	5.7e-11	2.6e-09	1.2e-09	1.2e-10	2.3e-11	1.1e-09	3.0e-11	5.1e-10
exp x	1.5e-11	2.6e-08	2.2e-10	5.7e-11	1.3e-11	3.7e-09	1.4e-11	2.7e-09
log x	1.3e-12	0.0e+00	5.6e-12	1.7e-12	1.6e-13	1.3e-11	5.3e-13	1.0e-10
\sqrt{x}	2.1e-12	2.7e-10	9.3e-12	2.4e-12	2.4e-13	3.7e-11	8.2e-13	1.5e-10
tan ^{−1} x	6.8e-13	5.9e-11	3.5e-13	2.2e-13	2.7e-14	7.8e-13	1.6e-13	9.6e-12

Logic behind the best methods

- Curtis–Reid (1974) + my modification #2: use 4 available intermediate points and function values from truncation and rounding error estimation to obtain a 4th-order-accurate estimate (unlike 2)
- Stepleman–Winarsky: the truncation error should be quartered if the step size is halved ⇒ start at a step size larger than the best guess and halve it until the decrease is substantially different from 2 due to rounding errors
 - I added a safety step for checking finiteness and extra warnings for edge cases
- Mathur: SW-like evaluation for many points simultaneously + diagnostic plots available