
Empirical research
in economics, finance, and management using R:
Essentials, real examples, and troubleshooting

Compiled from session01.tex @ 2024-06-21 15:33:13+02:00.

Day 1: Introduction into programming

Andreï V. Kostyrka

18th of September 2023

Presentation structure

1. Administrative formalities

2. Comparison of statistical packages

3. How computers compute and store data

4. Programming concepts

5. R as a programming language

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 1 / 108

Administrative formalities

Why this course exists

• Quantitative methods in economics have never been

more popular

• There are many fragmented online tutorials and Q&A’s

(oversimplified to the point of being unreliable)

• Last R course at Uni.LU: 2018 (by Dr. Laurent Bergé)

• Inspired me to switch from fragmented scripts to writing

structured packages

• Main difference: LB focuses on package development and

low-level building blocks – this course teaches general

problem solving in R for Ph.D.’s

• Promotion of open science and reproducible research at

Uni.LU

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 2 / 108

How this course was shaped

• Over the course of my doctoral studies, I received

dozens of questions from fellow students

• Students wanted to know how to

1. Answer highly specific research questions

2. Implement certain methods

3. Check if their implementation was correct

4. Produce non-standard graphics

• As a result, this course is based on DSEFM Ph.D. students’

concrete questions, data sets, and examples

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 3 / 108

Course goals

• Help researchers learn the basics of R and apply it to

their research questions

• Teach how to produce useful diagnostics and visualise

the results

• Guide how to proceed in case of troubles or errors

• Teach a bit of programming culture and algorithmic

thinking in general to break down complex problems

into computable steps

Professor Fortran and his friends will illustrate the point.

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 4 / 108

Credit: ‘Professor Fortran’s Encyclopaedia’ (1991).

Why R?

• It is free

• It is a programming language (≠ Stata): coherent & smart
syntax, loops and conditions (one rarely needs more)

• Interpreted, object-oriented, functional

• Easier and more intuitive than hard-core programming

languages

• It has a very smart development environment with very

helpful interface features (RStudio)

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 5 / 108

Competitive advantages

• Many built-in one-liners for popular methods

• 20,000 packages for data cleaning, wrangling, visualisation,

estimation, and more

• Easy to write functions to automate routines

• Vectorised operations, easy parallel computations with

big data

• Handles as many objects (data bases, models,

parameter sets etc.) as one desires

• High-quality plots (even 3D, even animations!)

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 6 / 108

R and yours truly

• Discovered R in 2015 (after a long affair with gretl) –

since then, a true love story

• Helped me not only in Ph.D., but in real life (as a Swiss

knife)

• Daily coding since then (and the best pocket calculator!)

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 7 / 108

What this course is not

• Not about narrow or highly specialised packages

• There are too many narrow tutorials on R packages for

data cleaning, wrangling, exploratory analysis etc.

• Bias in the R literature in favour of specific black-box

solutions from this-and-that package

• Not econometrics or statistics (a good thing!)

• Ask questions on those subjects afterwards, and I shall

provide references

• Not computer science or algorithm analysis

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 8 / 108

What this course is

• Basic understanding of the core R syntax

• Writing functions to solve a broad spectrum of problems
arising in applied economics

• Self-help: Handling errors, debugging functions, getting

help, troubleshooting economic models

• Creating plots of arbitrary complexity step by step

• Showcasing real-world economic applications of highly

customisable functions

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 9 / 108

Amount of technical detail per session

Session number

1 2 3 4 5 6 7 8 9 10

Low

Medium

High

R as a languageR as a languageR as a languageR as a languageR as a languageR as a languageR as a languageR as a languageR as a languageR as a languageR as a languageR as a languageR as a languageR as a languageR as a languageR as a languageR as a languageR as a languageR as a language
Data storageData storageData storageData storageData storageData storageData storageData storageData storageData storageData storageData storageData storageData storageData storageData storageData storageData storageData storage
AlgorithmsAlgorithmsAlgorithmsAlgorithmsAlgorithmsAlgorithmsAlgorithmsAlgorithmsAlgorithmsAlgorithmsAlgorithmsAlgorithmsAlgorithmsAlgorithmsAlgorithmsAlgorithmsAlgorithmsAlgorithmsAlgorithms

Programming languagesProgramming languagesProgramming languagesProgramming languagesProgramming languagesProgramming languagesProgramming languagesProgramming languagesProgramming languagesProgramming languagesProgramming languagesProgramming languagesProgramming languagesProgramming languagesProgramming languagesProgramming languagesProgramming languagesProgramming languagesProgramming languages
Basics of computingBasics of computingBasics of computingBasics of computingBasics of computingBasics of computingBasics of computingBasics of computingBasics of computingBasics of computingBasics of computingBasics of computingBasics of computingBasics of computingBasics of computingBasics of computingBasics of computingBasics of computingBasics of computing

Data typesData typesData typesData typesData typesData typesData typesData typesData typesData typesData typesData typesData typesData typesData typesData typesData typesData typesData types
RStudioRStudioRStudioRStudioRStudioRStudioRStudioRStudioRStudioRStudioRStudioRStudioRStudioRStudioRStudioRStudioRStudioRStudioRStudio

R packagesR packagesR packagesR packagesR packagesR packagesR packagesR packagesR packagesR packagesR packagesR packagesR packagesR packagesR packagesR packagesR packagesR packagesR packages
How to get helpHow to get helpHow to get helpHow to get helpHow to get helpHow to get helpHow to get helpHow to get helpHow to get helpHow to get helpHow to get helpHow to get helpHow to get helpHow to get helpHow to get helpHow to get helpHow to get helpHow to get helpHow to get help
Best practicesBest practicesBest practicesBest practicesBest practicesBest practicesBest practicesBest practicesBest practicesBest practicesBest practicesBest practicesBest practicesBest practicesBest practicesBest practicesBest practicesBest practicesBest practices

Text operationsText operationsText operationsText operationsText operationsText operationsText operationsText operationsText operationsText operationsText operationsText operationsText operationsText operationsText operationsText operationsText operationsText operationsText operations
ListsListsListsListsListsListsListsListsListsListsListsListsListsListsListsListsListsListsLists

Data manipulation and subsettingData manipulation and subsettingData manipulation and subsettingData manipulation and subsettingData manipulation and subsettingData manipulation and subsettingData manipulation and subsettingData manipulation and subsettingData manipulation and subsettingData manipulation and subsettingData manipulation and subsettingData manipulation and subsettingData manipulation and subsettingData manipulation and subsettingData manipulation and subsettingData manipulation and subsettingData manipulation and subsettingData manipulation and subsettingData manipulation and subsetting
Special data typesSpecial data typesSpecial data typesSpecial data typesSpecial data typesSpecial data typesSpecial data typesSpecial data typesSpecial data typesSpecial data typesSpecial data typesSpecial data typesSpecial data typesSpecial data typesSpecial data typesSpecial data typesSpecial data typesSpecial data typesSpecial data types

Logical operations and loopsLogical operations and loopsLogical operations and loopsLogical operations and loopsLogical operations and loopsLogical operations and loopsLogical operations and loopsLogical operations and loopsLogical operations and loopsLogical operations and loopsLogical operations and loopsLogical operations and loopsLogical operations and loopsLogical operations and loopsLogical operations and loopsLogical operations and loopsLogical operations and loopsLogical operations and loopsLogical operations and loops

Benchmarking & profilingBenchmarking & profilingBenchmarking & profilingBenchmarking & profilingBenchmarking & profilingBenchmarking & profilingBenchmarking & profilingBenchmarking & profilingBenchmarking & profilingBenchmarking & profilingBenchmarking & profilingBenchmarking & profilingBenchmarking & profilingBenchmarking & profilingBenchmarking & profilingBenchmarking & profilingBenchmarking & profilingBenchmarking & profilingBenchmarking & profiling
Parallel computingParallel computingParallel computingParallel computingParallel computingParallel computingParallel computingParallel computingParallel computingParallel computingParallel computingParallel computingParallel computingParallel computingParallel computingParallel computingParallel computingParallel computingParallel computing

VectorisationVectorisationVectorisationVectorisationVectorisationVectorisationVectorisationVectorisationVectorisationVectorisationVectorisationVectorisationVectorisationVectorisationVectorisationVectorisationVectorisationVectorisationVectorisation
DebuggingDebuggingDebuggingDebuggingDebuggingDebuggingDebuggingDebuggingDebuggingDebuggingDebuggingDebuggingDebuggingDebuggingDebuggingDebuggingDebuggingDebuggingDebugging

Functions and methodsFunctions and methodsFunctions and methodsFunctions and methodsFunctions and methodsFunctions and methodsFunctions and methodsFunctions and methodsFunctions and methodsFunctions and methodsFunctions and methodsFunctions and methodsFunctions and methodsFunctions and methodsFunctions and methodsFunctions and methodsFunctions and methodsFunctions and methodsFunctions and methods

Formulæ and summarisationFormulæ and summarisationFormulæ and summarisationFormulæ and summarisationFormulæ and summarisationFormulæ and summarisationFormulæ and summarisationFormulæ and summarisationFormulæ and summarisationFormulæ and summarisationFormulæ and summarisationFormulæ and summarisationFormulæ and summarisationFormulæ and summarisationFormulæ and summarisationFormulæ and summarisationFormulæ and summarisationFormulæ and summarisationFormulæ and summarisation
AnimationsAnimationsAnimationsAnimationsAnimationsAnimationsAnimationsAnimationsAnimationsAnimationsAnimationsAnimationsAnimationsAnimationsAnimationsAnimationsAnimationsAnimationsAnimations

3D plots3D plots3D plots3D plots3D plots3D plots3D plots3D plots3D plots3D plots3D plots3D plots3D plots3D plots3D plots3D plots3D plots3D plots3D plots
Custom plots and tipsCustom plots and tipsCustom plots and tipsCustom plots and tipsCustom plots and tipsCustom plots and tipsCustom plots and tipsCustom plots and tipsCustom plots and tipsCustom plots and tipsCustom plots and tipsCustom plots and tipsCustom plots and tipsCustom plots and tipsCustom plots and tipsCustom plots and tipsCustom plots and tipsCustom plots and tipsCustom plots and tips

GraphicsGraphicsGraphicsGraphicsGraphicsGraphicsGraphicsGraphicsGraphicsGraphicsGraphicsGraphicsGraphicsGraphicsGraphicsGraphicsGraphicsGraphicsGraphics

Stochastic methodsStochastic methodsStochastic methodsStochastic methodsStochastic methodsStochastic methodsStochastic methodsStochastic methodsStochastic methodsStochastic methodsStochastic methodsStochastic methodsStochastic methodsStochastic methodsStochastic methodsStochastic methodsStochastic methodsStochastic methodsStochastic methods
Derivative−free methodsDerivative−free methodsDerivative−free methodsDerivative−free methodsDerivative−free methodsDerivative−free methodsDerivative−free methodsDerivative−free methodsDerivative−free methodsDerivative−free methodsDerivative−free methodsDerivative−free methodsDerivative−free methodsDerivative−free methodsDerivative−free methodsDerivative−free methodsDerivative−free methodsDerivative−free methodsDerivative−free methods

Derivative−based methodsDerivative−based methodsDerivative−based methodsDerivative−based methodsDerivative−based methodsDerivative−based methodsDerivative−based methodsDerivative−based methodsDerivative−based methodsDerivative−based methodsDerivative−based methodsDerivative−based methodsDerivative−based methodsDerivative−based methodsDerivative−based methodsDerivative−based methodsDerivative−based methodsDerivative−based methodsDerivative−based methods
Numerical optimisationNumerical optimisationNumerical optimisationNumerical optimisationNumerical optimisationNumerical optimisationNumerical optimisationNumerical optimisationNumerical optimisationNumerical optimisationNumerical optimisationNumerical optimisationNumerical optimisationNumerical optimisationNumerical optimisationNumerical optimisationNumerical optimisationNumerical optimisationNumerical optimisation

Time−series methodsTime−series methodsTime−series methodsTime−series methodsTime−series methodsTime−series methodsTime−series methodsTime−series methodsTime−series methodsTime−series methodsTime−series methodsTime−series methodsTime−series methodsTime−series methodsTime−series methodsTime−series methodsTime−series methodsTime−series methodsTime−series methods
Robust estimationRobust estimationRobust estimationRobust estimationRobust estimationRobust estimationRobust estimationRobust estimationRobust estimationRobust estimationRobust estimationRobust estimationRobust estimationRobust estimationRobust estimationRobust estimationRobust estimationRobust estimationRobust estimation

Non−linear methodsNon−linear methodsNon−linear methodsNon−linear methodsNon−linear methodsNon−linear methodsNon−linear methodsNon−linear methodsNon−linear methodsNon−linear methodsNon−linear methodsNon−linear methodsNon−linear methodsNon−linear methodsNon−linear methodsNon−linear methodsNon−linear methodsNon−linear methodsNon−linear methods
OLS, IV, GMM, panel modelsOLS, IV, GMM, panel modelsOLS, IV, GMM, panel modelsOLS, IV, GMM, panel modelsOLS, IV, GMM, panel modelsOLS, IV, GMM, panel modelsOLS, IV, GMM, panel modelsOLS, IV, GMM, panel modelsOLS, IV, GMM, panel modelsOLS, IV, GMM, panel modelsOLS, IV, GMM, panel modelsOLS, IV, GMM, panel modelsOLS, IV, GMM, panel modelsOLS, IV, GMM, panel modelsOLS, IV, GMM, panel modelsOLS, IV, GMM, panel modelsOLS, IV, GMM, panel modelsOLS, IV, GMM, panel modelsOLS, IV, GMM, panel models
Applied economic analysisApplied economic analysisApplied economic analysisApplied economic analysisApplied economic analysisApplied economic analysisApplied economic analysisApplied economic analysisApplied economic analysisApplied economic analysisApplied economic analysisApplied economic analysisApplied economic analysisApplied economic analysisApplied economic analysisApplied economic analysisApplied economic analysisApplied economic analysisApplied economic analysis

topicstopicstopicstopicstopicstopicstopicstopicstopicstopicstopicstopicstopicstopicstopicstopicstopicstopicstopics
 (by you!) (by you!) (by you!) (by you!) (by you!) (by you!) (by you!) (by you!) (by you!) (by you!) (by you!) (by you!) (by you!) (by you!) (by you!) (by you!) (by you!) (by you!) (by you!)

Highly ratedHighly ratedHighly ratedHighly ratedHighly ratedHighly ratedHighly ratedHighly ratedHighly ratedHighly ratedHighly ratedHighly ratedHighly ratedHighly ratedHighly ratedHighly ratedHighly ratedHighly ratedHighly rated
topicstopicstopicstopicstopicstopicstopicstopicstopicstopicstopicstopicstopicstopicstopicstopicstopicstopicstopics

and voted−forand voted−forand voted−forand voted−forand voted−forand voted−forand voted−forand voted−forand voted−forand voted−forand voted−forand voted−forand voted−forand voted−forand voted−forand voted−forand voted−forand voted−forand voted−for
Other highly ratedOther highly ratedOther highly ratedOther highly ratedOther highly ratedOther highly ratedOther highly ratedOther highly ratedOther highly ratedOther highly ratedOther highly ratedOther highly ratedOther highly ratedOther highly ratedOther highly ratedOther highly ratedOther highly ratedOther highly ratedOther highly rated

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 10 / 108

During the course

• 10-minute break in the middle

• The schedule is intense; study at home, write down

questions about what is unclear, ask them during the

sessions

• Having a laptop is completely optional (you can follow

the screen), but running the code at least once in your

spare time is a must

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 11 / 108

The syllabus

• Contains the intended agenda

• Contains links to openly published learning resources
(books, online tutorials etc.)

• Your suggestions of learning resources are welcome

• Contains howework descriptions and full final project

proposals

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 12 / 108

Grading

• 10% attendance + 3 ⋅ 15% assignment + 45% project

• The assignments are short and must be done to

reinforce learning

• Final project: choose the task that is the most relevant
for your research or the one that can be later reused in
other projects

• You may reuse your existing material in the assignment

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 13 / 108

Technical requirements for all assignments

1. The implementation must be done in base R + ‘CRAN
recommended packages’

• Do not load random libraries; learn to create tools

2. If your model is hard to solve or simulate, you are

allowed to load a dedicated package for working with

such models

3. The following packages must not be used: ggplot2,

dplyr, tidyr, purrr, tibble, stringr, forcats,

magrittr, tidymodels

4. data.table may be used only if a benchmark shows a

>50% faster run time or if built-in functions halt

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 14 / 108

Any questions on the formalities?

Comparison of statistical packages

What to expect from a software package

• Should be free or affordable

• Should be extensible

• Should not hold the user hostage

• Should have the means to focus on research without

low-level quirks and allow the user to write good

algorithms

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 15 / 108

R is not just base R

R is an ecosystem similar to Python, Perl, Ruby, TEX etc.

• Basic installation: binary executable (providing the

console) + core libraries (graphics, stats, utilities etc.)

• User interface: IDE

• RStudio is the industry standard, suits most users

• Visual Studio Code plugins, editors with just syntax

highlighting etc.

• User packages: pure R (interpreted) or compiled (C++ via
RCpp, Fortran etc.)

• Might need dependencies (e. g. curl for fetching data)

• Can be installed / updated from within R

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 16 / 108

Stata

• Software package for script-based estimation (GUI

exists, but incomplete) + matrix manipulation language

• Created in 1985

• Comes in various editions (only difference: parallel

support + data size limitation)

• Popular among applied economists

• Has a dedicated journal (‘Stata journal’) since 2001

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 17 / 108

Stata strong points

• Easy to use for popular types of analysis

• Has almost all cookbook methods with some degree of
flexibility out of the box

• Most of them are very intuitive and cover a wide range

sufficient for many researchers

• Documentation is clear, detailed, and has good

theoretical insights

• Many reliable user-written packages (RePEc BoCode)

• Functions in ADO files are virtually open-source

• Anybody can look into the implementation of any

invokable function

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 18 / 108

Stata shortcomings

• Not flexible for Ph.D. in economics as the only tool

• Data transformation is a huge pain

• Few recent methods, new functions hard to implement

• Very expensive (hundreds of €)

• Violates the principles of open science

• Confusing interaction with environment objects, severely
limited interactivity, hard to debug

• Number? display. Vector? matrix list!

• User interface gives access to a mere fraction of

command parameters

• In the past: 32-bit storage format (23 significant bits)

macheps ≈ 10−7 – heavily corrupted saved data

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 19 / 108

EViews

• Software package for script-based procedures

• Created in 1994

• Popular among macroeconomists

• Main focus: time-series analysis and forecasting,

systems of dynamic equations, simulations of shocks

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 20 / 108

EViews strong points

• Excellent support for the variety of basic time-series

methods, tests, and method-specific diagnostics and

plots

• Out-of-the box support for fetching data from

commercial sources (FRED, DBnomics, World Bank,

Bloomberg etc.)

• Really easy to define state-space models and manage

hundreds of connected equations

• Developers answer paying users’ questions on the forum

within a couple of days

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 21 / 108

EViews shortcomings (my pulse went up)

• Almost impossible to develop custom tools

• Common mathematical / statistical functions missing

• Dated / limited / incomplete out-of-the box methods

• Unstable, obsolete, uncustomisable numerical solvers

• No constrained optimisation, strange stopping criteria

• Some functions have hidden bugs (e. g. LASSO)

• No way for the user to fix those bugs

• Data manipulation methods even poorer than in Stata

• Zero interactivity / diagnostic methods (black box)

• Hurts and frustrates the user in many ways

• Code editor had no dark scheme before my 2022 request

• No global variable support

• Has no learning resources sans the forum and manual

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 22 / 108

SPSS

• Software suite with emphasis on GUI (command syntax

language support exists)

• Created in 1968

• Various editions exist (base, standard, premium etc.)

• Has purchasable addons (e. g. Amos for structural equation

modelling)

• Very popular among sociologists and psychologists

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 23 / 108

SPSS strong points

• Easy to use for popular types of analysis

• Allows researchers without any knowledge of statistics or

coding skills to conduct analysis in several mouse clicks

• Intuitive user interface with convenient navigation

• Easy to estimate models with features common in

sociology / psychology (tricky linear contrasts, partial

interaction contrasts etc.)

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 24 / 108

SPSS shortcomings

• Ridiculously expensive (3600+ $)
• Little community support, no StackExchange, no strong

online culture with enthusiastic users

• Lacks some basic functionality (e. g. robust standard

errors or non-parametric regression!)

• Insurmountably hard to implement a custom model
• State-of-the-art models are not added for several years

• Weak facilities for organising a workflow with pipelines
• Or choosing between multiple models automatically

depending on the fit / forecast quality

• SPSS UI discourages coding, which hampers quality
assurance, process review, and replication
• Hayes (2022): ‘Users of SAS and R have no choice but to

write in code’ (as if it were a bad thing!)

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 25 / 108

SAS

• Software suite with emphasis on command-line syntax

• Created in 1972

• Has over 200 modules for various tasks

• Has a cloud-based soluton, Viya

• General programming language with emphasis on

database handling, specialised analytics, and

visualisations

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 26 / 108

SAS strong points

• Loads big data sets very quickly without overloading
RAM

• Could handle big data even 50 years ago

• Comprehensive logging for troubleshooting

• Particular applications: complex error structures in

mixed-effects models (and fast)

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 27 / 108

SAS shortcomings

• Prohibitively expensive (8000+ $ – even American
Express dropped it!)

• No community support, no StackExchange

• Not usable on Mac & Linux (only VMs)

• Memorisation rather than conceptual understanding

• Idiosyncratic, not useful for other programming languages

• Historical ballast: one thing / step, proc this proc that

• Arduous data set manipulation not for the modern age

• Does not return objects to further manipulate

• Macros contaminate the global environment or rely on

global variables

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 28 / 108

Python

• High-level general-purpose programming language

• Created in 1991

• Designed to be extensible via modules, has over 200,000

official packages

• Has many wrappers around C/C++ libraries, e. g. PyTorch

• Very popular among CS researchers and people in the

machine-learning and artificial-intelligence industry

• The most popular programming language in the world

since October 2021 (as of September 2023)

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 29 / 108

Python strong points

• Free and supported on all platforms that can run DooM

• Easy to get quick results with little programming skill

• Machine-learning capabilities make it the

highest-ranking language in prediction competitions

(e. g. Kaggle, M5 etc.)

• Best for prototyping in many areas of research and for

machine learning

• Looks very good on one’s CV to Big Tech companies

• Libraries for virtually all aspects of computing, not only

economics

• Good enough for many practical applications

• Teaching algorithms and robotics to kids

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 30 / 108

Python shortcomings

• No dedicated focus on research in economics

• Joke (Michael Reeves): ‘Python can do anything, just badly’

• Slow, bad as the sole language for large-scale projects

• Common to start in Python and rewrite in C or Rust

• Dependency hell: many projects depend on specific
versions

• Multiple projects, multiple environments and packages

• Code rot: evolves so quickly, hard to reproduce research
after mere months

• Transition from Python 2 to Python 3 was painful

• For economists: Many statistical methods are
implemented by CS researchers, not statisticians

• Can be poorly documented or strangely implemented

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 31 / 108

Credit: xkcd. Technical explanation.

https://www.explainxkcd.com/wiki/index.php/1987:_Python_Environment

R

• High-level statistical programming language

• Created in 1993

• Extensible via user packages, has over 20,000 in the

official repository (CRAN)

• Written in Fortran and C⇒ the base is designed to be as

fast as possible

• Very popular among researchers in bioinformatics and

genomics, data miners

• #16 most popular programming language (2023-05;
was #8 in 2020-08) (the only statistics-oriented one in
the top 20; MATLAB is #15)

• Has a dedicated journal (‘R journal’) since 2009

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 32 / 108

R strong points

• Free, open-source, extensible, feature-rich

• Huge active community, many answers to users’ questions

• CRAN package maintainers are responsible for downstream

compatibility; version / package / environment issues are

much rarer than in Python

• One can easily code whatever they want in multiple

possible ways (great for highly custom research)

• Has some very smart and convenient coding features

• There are many extensions: Markdown & Shiny
shiny.rstudio.com/gallery/superzip-example.html

gallery.shinyapps.io/shiny-salesman

• Possible to create one’s own packages

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 33 / 108

shiny.rstudio.com/gallery/superzip-example.html
gallery.shinyapps.io/shiny-salesman

R shortcomings

• Slightly steeper learning curve, especially for users
without command-line experience

• Lots of tutorials⇒ lots of bad tutorials

• Was not created by a coordinated team⇒ invocation of
certain features can be clunky (e. g. parallelism)

• Function naming principles are sometimes inconsistent

• Multiple functions may implement the same concept (e. g.

prcomp() and princomp() with different structure)

• Syntax depends on the contributor of that function

• Quality control depends on the programmer if external
packages are used

• Occasionally, packages are deleted from CRAN – requires

an extra step to install the archived version

• Cannot replace all statistical packages with all features

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 34 / 108

Free & open-source vs. corporate

• Unfair comparison: hard to both commercialise a

language and attract enough contributors to allow it to

develop according to users’ needs

• Programming languages’ high flexibility (‘real

programming’) – corporate products are domain-specific

(restricted by the logic of their application)

• For economists: Research relying on 30-year-old

versions of closed products sold at 8000 $ raises

suspicion (pay-to-reproduce)

• Sanity check: search ‘why you should abandon SPSS for

R’ and the opposite, compare the search results

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 35 / 108

A curious tendency

Proprietary software developers are developing ways to

integrate their products with open-source programming

languages.

• Stata: embed Python or call Stata from Python

• Eviews: R connector

• SPSS: gave up on non-parametric methods, offers an

R plug-in

• SAS: Python, R, Java, Lua modules (both free and paid)

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 36 / 108

https://www.ibm.com/support/pages/does-ibm-spss-statistics-offer-robust-or-nonparametric-regression-methods

Python vs. R

Python: more versatile, general-purpose; focus on

prediction via data science, big data, machine learning;

written mostly by CS specialists

R: more specalised, more powerful at statistics,

bioinformatics, econometrics, visualisations for academia;

focus on estimation; written mostly by researchers

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 37 / 108

Software and ‘data science’

• Some words look attractive on a CV; Python, R, and data
science are among them

• Yet one should not glorify tools and say ‘data science’ for

‘using data to solve tasks in a pragmatic manner’

• The tools are there to help one solve problems
(research, industry, home projects)

• R and Python are especially good within a good system of

other highly specialised tools that do one task very well

YouTube video by Baba Brinkman: rap

battle between a data scientist and a

classical statistician, arguing for

predictive algorithmic models versus

inferential data models respectively

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 38 / 108

https://www.youtube.com/watch?v=uHGlCi9jOWY

How computers compute and store data

Why do economists use computers?

• The 1880 U.S. census took 8 years to process

• Herman Hollerith used punch cards to speed up the

process in 1890

• Since the 1910s, punch-card-based machines were

manufactured for accounting

• In the 1940s, the need for computational methods and
pseudo-random numbers grew (simulations, Markov
chains)

• The machines used during WWII to decipher German codes

were freed

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 39 / 108

Hollerith’s tabulating machine
Credit: Adam Schuster.

Left: clerk punching a card for the 1950 U.S. census.

Right: students in the machine room of LSE (1964).

Credit: U.S. Census Bureau; LSE.

Types of data we would like to store

• Numbers (integers, reals, decimals)

• Text

• Images, sound, video, 3D models etc.

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 40 / 108

Types of data computers can store

• Two numbers: 1 and 0

• We need to construct all other types of data from this

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 41 / 108

How computers store data

• By default, 8 bits (0 or 1) are grouped into something

called a byte

• Bytes may be interpreted as numbers or characters

• ASCII: encoding to match numbers to symbols

(1 integer in [0, 255] = 1 byte = 1 symbol)

• Unicode (most popular: UTF-8): encoding with more

bytes per character to represent more characters

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 42 / 108

How to read binary

Suppose that we have a byte, i. e. 8 bits:

01100101

This is how it should be read – each digit corresponding to a

power of 2 in base-2 arithmetic:

0 1 1 0 0 1 0 1
27 26 25 24 23 22 21 20

Result:

0 ⋅ 27 + 1 ⋅ 26 + 1 ⋅ 25 + 0 ⋅ 24 + 0 ⋅ 23 + 1 ⋅ 22 + 0 ⋅ 21 + 1 ⋅ 20

64 + 32 + 4 + 1 = 101

We write it as follows: 10110 = 011001012. Q: What is 1012?
Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 43 / 108

How to read hexadecimal (base 16)

Another popular number base is 16 because bytes consist of

8 bits, and those are easy to write with two base-16

numbers.

For base-10 numbers, 10 digits are required (0, 1, 2, 3, …, 9).

For hex numbers, 16 digits are required. The digits larger

than 9 are denoted as a (10), b (11), c (12), d (13), e (14), f (15).

Converting 𝑏𝑒𝑒𝑓16 to decimal:

𝑏𝑒𝑒𝑓 = 𝑏
11
⋅ 163 + 𝑒

14
⋅ 162 + 𝑒

14
⋅ 161 + 𝑓

15
⋅ 160 = 48 879

Q: convert 8008510 to hex and 8008516 to dec.

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 44 / 108

Scientific (exponential) notation

80000 = 8 ⋅ 104, 0.000 002 = 2 ⋅ 10−6.

Normalised SN: 𝑎 × 10𝑏, where 1 ≤ |𝑎| < 10; 𝑎 is the

significand (mantissa), 10 is the base, 𝑏 is the exponent.

Easy to round: the population of Luxembourg in 2021 was

640064 = 6.400 64 ⋅ 105 ≈ 6.4 ⋅ 105.

Scientific notation also exists for binary:

1.11012 ⋅ 2
112 = (1 + 1/2 + 1/4 + 0 + 1/16) ⋅ 8 = 14.5

Here, 1.11012 = 1.812510 is the mantissa, 2 is the base, and

113 = 310 is the exponent.

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 45 / 108

Floating-point arithmetic

Computers represent real numbers by approximating them

with an integer mantissa and an integer exponent:

1.812510 = 18 125�������
integer
mantissa

⋅ 10⏟
base

integer
exponent

⏞−4

The number 18.125 has the same mantissa and a different

exponent (−3). The point separating the whole and the

fractional part moves: 1.8125 → 18.125.

Such numbers are called floating-point numbers.

Performance measure: FLOPS (FP operations per second).

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 46 / 108

Available precision

0 10000001101 1100000011010010000000101110100000111010110010111001

• 64 bits are used as follows: 1 for sign, 11 for exponent,

52 for significant digits (IEEE 754 standard)

(−1)sign ⋅ (1.significand) ⋅ 2exponent−2
10+1

• In decimal: ≈ 1.7532… ⋅ 21037−1023 = 28 724.5
• 64-bit FP numbers represent 5 ⋅ 10−324 … 2 ⋅ 10308

• Are 64-bit calculations accurate up to 10−323?
No, only to 2.2 ⋅ 10−16 = 1/252! (Relative accuracy.)

• There are only 52 binary significant digits (≈16 decimal) –
after those, the input is truncated
• Max. relative rounding error is thus 0 … 1.1 ⋅ 10−16

• Arbitrary precision exists, but is slow

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 47 / 108

Graphical representation of FP accuracy

1 2 4 8 16

• All intervals [1, 2], [2, 4], [4, 8], …are cut into

252 ≈ 4.5 ⋅ 1015 equal intervals. All numbers are rounded

to the edge of those intervals

• The gap between two representable numbers is

proportional to the number magnitude

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 48 / 108

Precision loss examples

a <- 2^52

b <- a + 0.46

b - a # is equal to what

Answer: zero!

(Exactly integer zero, no decimal fluff: 0.000…0.)

• The next number after 252 representable by the machine

is 252 + 1 – everything less than 252 + 0.5 gets rounded

down to 252.

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 49 / 108

Finite precision with pen and paper

I give you a number: 1/3. Write it using 4 decimal digits.

• Answer: 0.3333 (rounding error: −1/30000).

I give you a number: 2/7. Write it using 3 decimal digits.

• Answer: 0.286 (rounding error: 1/3500).

In our decimal system (base 10), we can represent any

integer divided by 2𝑎 ⋅ 5𝑏 (for integer 0 ≤ 𝑎, 𝑏 < ∞) as a finite

decimal fraction.

1/40 = 1/(23 ⋅ 5) = 0.025 – finite.

1/210 = 1/(2 ⋅ 3 ⋅ 5 ⋅ 7) = 0.0(047619) – infinite (periodic, but

we need to stop somewhere (paper is finite).

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 50 / 108

Final error scale

• Accurate + inaccurate = inaccurate

• Large abs. err. + Small abs. err. = Large abs. err.

• Smth big + smth small = as accurate as the big thing

Rule: the harm from the absolute error is minimal when the

amounts have the same order of magnitude.

Computations with 𝑋1 = share of population ∈ [0, 1] and
𝑋2 = GDP (€) ∈ [0, 1012] are slightly less accurate than with

𝑋∗2 = GDP, bn or trn ∈ [0, 10].

• In research articles: tables with �̂�1 = 12 325 and

�̂�2 = 0.000 0074 are annoying!

• Especially without readability-enhancing thin spaces

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 51 / 108

Precision loss investigation

• With finite memory per number, all infinite decimal

fractions are truncated / rounded to the nearest

representable number

• In the following analysis, the sign ‘
64
Q’ shall denote ‘is

approximated by 64-bit computers through truncation

to’

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 52 / 108

Good decimal, bad binary fractions

Since computers store numbers in binary, only the numbers

that can be written as a finite sum of integer powers of 2 are

stored losslessly (not powers of 5, alas!).

1/2 = 0.510 = 0.12 – fine.

4/5 = 0.810 = 0.1100 1100…2 = 0.11002 – infinite period.

Mantissa is truncated after 52 bits⇒ we can represent only

0. [1100]�������
×12

1100 64
Q 0.8 − 2 ⋅ 10−16 or

0. [1100]�������
×12

1101 64
Q 0.8 + 4 ⋅ 10−17.

If 0.8 is saved as a number, it is read back as a different one:

print(0.8, 20) # 0.80000000000000004441.

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 53 / 108

Computers have terrible precision

• We often think that computers are more accurate than

humans (or even error-free), but this could not be

further away from the truth

• Machine epsilon (macheps): relative step size between

two representable numbers, or 2−52 ≈ 2.2 ⋅ 10−16
• Max. relative error: macheps/2

• Rounding errors (e. g. if numbers have different orders of

magnitude), catastrophic cancellation, ill conditioning

(high sensitivity to small input errors) make it even

worse

• Do not forget about programmers’ mistakes and bugs

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 54 / 108

Real case #1: numerical derivative failure

• Suppose that an economist is modelling 𝑌 that contains
GDP as a linear term: 𝑌 ≔ 𝑓(GDP,…) + 𝜀 = 𝐺𝐷𝑃 + 𝑓(…)
• ∂𝑌/∂𝐺𝐷𝑃 = 1, but they use numerical derivatives

• Lux GDP is 80 bn €⇒ the gap between two

representable numbers is 8 ⋅ 1010/252 ≈ 1.7 ⋅ 10−5

• Default step size in derivative computation: 10−6

∇GDP𝑌|GDPLux
≈
[8 ⋅ 1010 + 10−6] − 8 ⋅ 1010

10−6

• However, [8 ⋅ 1010 + 10−6] 64Q 8 ⋅ 1010 ⇒ zero difference in
the numerator (because 10−6 < 1.7 ⋅ 10−5)!
• The computer returns 0 instead of 1⇒ numerical error

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 55 / 108

How computers compute functions

• CPUs can only add and multiply (and flip bits based on

some instructions)

• However, we need such functions as exp 𝑥, sin 𝑥, Γ(𝑥),
Φ(𝑥) (normal CDF)

• Which trick can be used to compute any function with
addition and multiplication? Polynomial approximation

• Weierstrass approximation theorem in action

• Taylor expansion, Chebyshev polynomials, Remez

algorithm for given intervals

• Pick desired accuracy, split ℝ into intervals, find

polynomials that achieve this accuracy

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 56 / 108

Example: computing normal CDF

Φ(𝑥) ≔ 1/2 + 1
𝜋 ∫

𝑥
0 𝑒

−𝑡2/2d𝑡 – no analytical expression exists!

Taylor expansion at 𝑥 = 0 (pure arithmetic):

Φ(𝑥) = 1/2 + (𝑥 − 𝑥3/3 + 𝑥5/10)/√𝜋 + 𝑂(𝑥7)

A more accurate one for 𝑥 ∈ [0,∞) with |𝜀| < 3 ⋅ 10−5:

Φ(𝑥) = 1 − 𝑒−𝑥
2
/√2𝜋 ⋅ (1.3𝑥2 + 6.8𝑥 + 34)/(𝑥 + 3)3

• Caveat: 𝑒𝑡 itself requires approximation: ∑𝑛𝑖=0 𝑡
𝑖/𝑖!

• A better solution: 𝑝 = 𝑡 log2 𝑒 ⇒ 𝑒𝑡 = 2⌊𝑝⌋�
integer

⋅ 2𝑝−⌊𝑝⌋�
polynomial
approx.

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 57 / 108

Reading the source code

The source code of programming languages is immensely

useful in debugging when there is nothing else remaining.

Examples (check these links):

• Source of Gaussian CDF

• Source of gamma function Γ(𝑥)
• Source of inverse Gaussian CDF Φ−1(𝑥)
• Sine wave

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 58 / 108

https://github.com/SurajGupta/r-source/blob/master/src/nmath/pnorm.c
https://github.com/SurajGupta/r-source/blob/master/src/nmath/gamma.c
https://github.com/SurajGupta/r-source/blob/master/src/nmath/qgamma.c
https://github.com/lattera/glibc/blob/master/sysdeps/ieee754/dbl-64/s_sin.c

Real case #2: dealing with ratios

A DEM doctoral student needed to compute

𝑊(𝑥) ≔
𝜙(𝑥)

Φ(𝑥)Φ(−𝑥)
,

where 𝜙(𝑥) ≔ (2𝜋)−1/2 exp(−𝑥2/2) is the Gaussian density,

Φ(𝑥) ≔ ∫𝑥−∞ 𝜙(𝑡)d𝑡 is its cumulative distribution function.

−10 −5 0 5 10

0.
0

0.
2

0.
4

φ(x)

−10 −5 0 5 10

0.
0

0.
4

0.
8

Φ(x)
Φ(− x)
Φ(x)Φ(− x)

Goal: green function divided by cerulean function.

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 59 / 108

Real case #2: simple approach failure

Straightforward solution:

dnorm(x) / pnorm(x) / pnorm(-x)

Same: dnorm(x) / (pnorm(x) * pnorm(-x))

−10 −5 0 5 10

0
2

4
6

8
10

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 60 / 108

Real case #2: root cause

The exponential function grows / decays so quickly, the

numbers quickly approach the limits of machine precision.

Note that Φ(−𝑥) = 1 −Φ(𝑥), but not on a computer.

At 𝑥 = 8.1, the computer saves the following in the memory

when computing the denominator:

• Φ(8.1) 64Q 1 − 2.22 ⋅ 10−16

• Φ(−8.1) 64Q 2.75 ⋅ 10−16 (but should be same as 1 −Φ(𝑥)!)

The relative error is 2.75−2.22
2.22 ≈ 24%!

For larger |𝑥|, the computer gives up: Φ(8.3) 64Q 1 exactly,
i. e. Φ(8.3) − 1 = 0.000…0 in R (should be ≈ 5 ⋅ 10−17 < 𝜀/2).

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 61 / 108

Real case #2: solution idea

Some developers (including R devs) added an alternative

way of computing product involving rapidly growing /

decaying functions without catastrophic accuracy loss.

Recall the relationship between ‘×’, ‘+’, and logarithms:

• log(𝑎 ⋅ 𝑏/𝑐) = log𝑎 + log𝑏 − log 𝑐
• 𝑎 ⋅ 𝑏/𝑐 = exp(log𝑎 + log𝑏 − log 𝑐)

Numerically unstable / near-zero functions usually have the

option to return the logarithm instead:

𝜙(𝑥) = (2𝜋)−1/2e−𝑥
2/2 ⇒ log𝜙(𝑥) = −0.5 log2𝜋 − 𝑥

2

2
Only addition and multiplication⇒ very stable!

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 62 / 108

Real case #2: solution implementation

Some R functions (densities, probabilities) have the option

to return the log of the result:

𝜙(𝑥)/Φ(𝑥)/Φ(−𝑥) = exp(log𝜙(𝑥) − logΦ(𝑥) − logΦ(−𝑥))

exp(dnorm(x, log = TRUE)

- pnorm(x, log = TRUE)

- pnorm(-x, log = TRUE))

Recall that log𝜙(𝑥) ∝ 𝑥2, logΦ(−|𝑥|) ∝ 𝑥2. As long as 𝑥2

itself is accurate, its exponent is also reasonably accurate.

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 63 / 108

Real case #2: solution visualisation

s <- function(x) exp(dnorm(x, log = TRUE)

- pnorm(x, log = TRUE)

- pnorm(-x, log = TRUE))

−10000 −5000 0 5000 10000

0
20

00
60

00
10

00
0

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 64 / 108

Numerical accuracy summary

• Computers never store full real numbers – only their

closest analogue on a variable-width grid

• This grid denser near zero, sparser for large numbers

• At any order of magnitude, requesting relative accuracy

higher than 1.1 ⋅ 10−16 is meaningless (unless one is

using a custom arbitrary-precision solution)

• (7/3 - 4/3) - 1 = 2.2e-16 = macheps

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 65 / 108

Numerical and analytical equality

Consider 5 numbers computed in any 64-bit software:

a <- c(0.3, 0.4-0.1, 0.5-0.2, 0.6-0.3, 0.7-0.4)

length(unique(a))

How many unique numbers are there?

Surprise: not 1. Not 5. But 3!

0.29..99, 0.30..04, 0.29..99, 0.29..99, 0.29..93

.. denotes 13 repeated digits.

Try it in the Firefox console (F12).

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 66 / 108

Credit: SMBC.

Real case #3: Estimation with copulæ

Visualising a function of 2 variables (Clayton copula):

𝐹(𝑥, 𝑦) ≔ max{(𝑥−𝑘 + 𝑦−𝑘 − 1)−1/𝑘, 0}, 𝑘 ∈ [−1,∞) 0

x

y

F
(x,y)

x

y

F
(x,y)

x

y

F
(x,y)

𝑘 = −0.35 𝑘 = −0.25 𝑘 = −0.15

The weird spike does not appear if 𝑘 = −0.2499 or −0.2501,
but reappears if 𝑘 = −0.5 or −0.125. What is going on?

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 67 / 108

Real case #3: Explanation

f <- function(x, y, k)

pmax((x^(-k) + y^(-k) - 1)^(-1/k), 0)

x <- seq(0, 1, 0.01)

z <- outer(x, x, f, k = -0.25)

Let 𝑏 ≔ 𝑥−𝑘 + 𝑦−𝑘 − 1. Problem: if 𝑏 < 0 and −1/𝑘 is not an

integer, then, 𝑏−1/𝑘 is not well-defined!

The power function in C/C++, pow from math.h, for 𝑏 < 0,
succeeds if the exponent is integer (and fails otherwise).

Integer powers are computed via repeated multiplication.

R, written in C, complies:

(-2)^c(-3.99, -4, -4.01)

#> NaN 0.0625 NaN

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 68 / 108

https://en.cppreference.com/w/c/numeric/math/pow

Real case #3: Precautions

If there is a risk of your code creating an indeterminate or

an ill-defined expression (00, 0/0, 11/0, (1/0)/(1/0),
(1/0) − (1/0), 0 × (1/0), 𝑏𝑝 for 𝑏 < 0 etc.),

1. Write a well-defined exception for the edge case;

2. Check if it makes sense economically.

In this case, negative integer powers in the copula would

make no sense for modelling financial returns because the

densities obtained with the re-defined function look

strange.

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 69 / 108

Real case #3: Practical conclusion

With integer −1/𝑘, market return density may look erratic.

x

y

z

x

y

z

0 1 2 3 4 5

0.
0

0.
1

0.
2

0.
3

x3

z3

𝑘 = −0.26
3D view

𝑘 = −0.25
3D view

𝑘 = −0.25
side view

In this case, to avoid nonsensical subsequent analysis,

re-define 𝑓 by not allowing −1/𝑘 > 0 to be integer.

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 70 / 108

Programming concepts

Key to successful programming

Think like a computer!

It implies that one has to understand what is happening

inside the black box.

‘If you want to understand somthing, try explaining it

to a computer.’

Donald Erwin Knuth.

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 71 / 108

Input and output (I/O)

Computers crunch inputs and return outputs.

• Mice: human movement as input, changes in the cursor
position as output

• Possible interpretation: pairs (𝑥, 𝑦) of pixel values to draw

the cursor at on the screen

• Programming languages: streams as input and output
(sequences of data elements)

• Programmes can operate independently, or require input

from the user at the operating-system level

• Programmes can read files or device signals as input and

write files, blink lights, or play sounds as output

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 72 / 108

Piping

The output stream of one programme can be piped into

another programme as input.

Example: (1) take the current time in nanoseconds, (2) trim

the first 6 characters (keep the last 3), (3) divide by 2 and

add 200, and (4) play through the speakers.

date +"%N" | # Smth like 640713048

sed "s/^.\{6\}//" | # 048

sed "s/$/\\/2+220/" | # "048/2+220"

bc | # 244

awk '{print "ffplay -f lavfi -i \

\"sine=frequency="$1":duration=1\" \

-autoexit -nodisp"}' | # Writes a command

eval "$(cat -)" # Evaluates it

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 73 / 108

Sorting

Computers on their own cannot sort data (only read and

write ones and zeros). They need a rule what to do with a

string of numbers.

Example to sort 𝑛 numbers (bubble sort):

1. Go from left to right 𝑛 − 1 times

2. Check two adjacent numbers

3. If they are not in order, swap them

Strings are sorted alphabetically: [‘1’, ‘4’, ‘10’] will be sorted

as [‘1’, ‘10’, ‘4’]!

• To ensure proper order, pad file names with zeros

• We have 10 sessions; this file is session01.pdf

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 74 / 108

Variables

Variables are containers for storing values. Upon variable

creation, the computer reserves memory to store its

contents (of any type).

Some languages (C, Java, Pascal) require declaring variable

type (integer, string / character, array). R has duck typing:

If it walks like a duck and it quacks like a duck, then,

it must be a duck.

R can convert types dynamically.

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 75 / 108

Dynamic typing can be a curse

x <- c(6, -2, 2, -7)

print(x)

#> 6 -2 2 -7

sort(x)

#> -7 -2 2 6

sort(c(x, "John"))

#> "-2" "-7" "2" "6" "John"

• For applied economic analysis, in most cases, the

desired data type is numeric matrix / array

• Text data requires special handling

• Image data (e. g. light intensity map) require even more

special handling

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 76 / 108

Global and local variables

Global variables are accessible from any place of the

programme by any function.

Local variables are created only at a function call, and are

deleted afterwards (only the function return remains).

a <- 3 # Global a

f <- function(x) {

b <- x^2 # Local b

c <- b + a # By the way, this is bad practice

return(c) # What if a is changed? Unreliable!

}

EViews problem: has no global variables – one needs to

copy scalars from one page to another every time.

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 77 / 108

Conditions

By default, programmes are executed from top to bottom, in

the order in which the lines go.

Conditions: control structures that check something and

determine whether a block of code gets executed or

skipped.

a <- 2

b <- 3

if (a < b) {

print("Number b is greater than a.")

} else {

print("Number a is greater or less than b.")

}

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 78 / 108

Loops

Iteration: repeating a block of commands many times,

possibly with some changes.

‘For’ loop: iteration over something, i. e. running the same

command using each element of something once.

‘While’ loop: iteration as many times as needed until

something happens.

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 79 / 108

Loop termination

A ‘for’ loop runs predictably until it processes all values.

A ‘while’ loop can be potentially infinite – to avoid this, a

stopping criterion is needed.

Common stopping rules:

• A change of something between two iterations is less

than a small number (e. g. 10−8)
• Maximum number of iterations (e. g. 1000) reached

• Economics: The first derivative of something (usually he

objective function) is close to zero (e. g. |∇𝑓| < 10−8 for
all coordinates of 𝑓)

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 80 / 108

Array

Array: a data structure of fixed size that store elements of

the same type.

Arrays can have arbitrary dimensions and are shaped like

these objects:

• Vector

• Rectangle

• Rectangular cuboid (parallelepiped)

• Hypercube

Examples: string of text = 1D, spreadsheet = 2D, computer

screen = 2D.

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 81 / 108

Array wrapping

Is a printed book a 1D or a 3D array? Is Proust’s ‘In Search of

Lost Time’ a 4D or a 5D array?

Arrangement into lines, columns, and pages: 3D.

• Errata refer to pages and lines to suggest corrections.

On the other hand, it is an ordered chain of characters that

simply get wrapped around if they exceed the line length.

Long stacks of lines are wrapped into pages (pagination).

Making books by wrapping lines is called typesetting.

Is block G in Kirchberg a 1D or a 3D array?

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 82 / 108

Array indexing

An array with dimensions 𝑑1 × 𝑑2 ×⋯ × 𝑑𝑛 is representable
via indices 1, 2,… , (𝑑1𝑑2⋯𝑑𝑛).

Example: All rational numbers can be enumerated by a

single integer.

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 83 / 108

Enumerating rationals with integers

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 84 / 108

Lists: when arrays are not enough

List: an abstract data type, a container that holds other

objects (possibly heterogeneous).

R has out-of-the-box list support. Some languages may not

support lists natively, but usually there is an extension for

them (e. g. C++):

using namespace std;

using namespace boost;

typedef variant<string, int, bool> object;

struct vis : public static_visitor<> {

void operator() (string s) const { /* */ }

void operator() (int i) const { /* */ }

void operator() (bool b) const { /* */ }

};

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 85 / 108

Object-oriented programming

OOP: An approach to programming where software design is

centred around data and objects, as opposed to functions,

logic, operations with bytes, and CPU instructions.

OOP involves applying specific methods to objects of

specific classes.

An object can be a collection of other objects (values,

arrays, strings, even functions), and methods are algorithms

to perform specific operation on specific elements of the

collection.

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 86 / 108

Example of OOP code (Python)

class Researcher:

def __init__(self, name, food,

field = "economics", coauthors = []):

self.name = name

self.field = field

self.food = food

self.coauthors = coauthors

def print_greeting(self):

print("Good morning, " + self.name + "!")

def print_allstats(self):

print(self.name + " is doing " + self.field +

" and likes " + self.food + ".")

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 87 / 108

OOP code output (Python)

g117 = Researcher(name = "Andreas Irmen",

food = "foie gras")

print(g117.name)

#> Andreas Irmen

g117.print_greeting()

#> Good morning, Andreas Irmen!

g117.print_allstats()

#> Andreas Irmen is doing economics and

#> likes foie gras.

g117.coauthors.append(["Anastasia Litina",

"Ka-Kit Iong"])

print(g117.coauthors)

#> [['Anastasia Litina', 'Ka-Kit Iong']]

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 88 / 108

Examining objects

In OOP languages, objects, being collections of certain

values, can be examined in terms of structure. This is how

one would ‘unpack’ everything that was put into an object:

print(g117.__dict__)

{'name': 'Andreas Irmen',

'field': 'economics',

'food': 'foie gras',

'collaborators': [['Anastasia Litina',

'Ka-Kit Iong'

]]

}

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 89 / 108

Non-OOP paradigms

• Functional programming (almost everything is a fuction)

• R is both FP and OOP

• ‘Everything that exists is an object, everything that

happens is a function call.’ – John Chambers on R.

• Imperative programming (programmes are lists of
instructions)

• Create variable 𝑎 to store real numbers, set it equal to 3.4,

initialise a variable for result, run this loop to update the

result…

• Procedural programming (FORTRAN, C, Pascal)

• Methods→ procedures, object→ record, class→ module

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 90 / 108

Debugging

Troubleshooting your code, finding and eliminating bugs –

mistakes that prevent your code from working as intended.

Tools for eliminating bugs:

• ‘Print’ (print("Made it to here! 3"))

• Debugger (step-by-step execution, memory debugger)

• Debugger in IDE

• Tracer (following the chain: which function called which)

• Linter (code analyser that checks the code without

running it by checking syntax, variable use, and

‘dangerous’ features)

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 91 / 108

First actual case of bug being found: Mark II computer, Harvard

University, engineering team of Grace Hopper (1947).

Compilation vs. interpretation

In R, one writes scripts that are interpreted on any machine

running any OS (works out of the box):

e <- 2.718281828459045

print(e) # 2.718282

In Rust, one has to compile a programme (translate from

human to machine code, i. e. processor instructions):

const E: f64 = 2.718281828459045;

fn main() { println!("{}", E); }

rustc -o mybin hello.rs

./mybin # 2.718281828459045

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 92 / 108

Compiled code example

hexdump hello

0000000 457f 464c 0102 0001 0000 0000 0000 0000

0000010 0003 003e 0001 0000 1040 0000 0000 0000

<...>

0003a90 742e 7865 0074 662e 6e69 0069 722e 646f

0003aa0 7461 0061 652e 5f68 7266 6d61 5f65 6468

Compiled executables look different on different machines

(PE/EXE on Windows, Mach-O on Mac, ELF on Unix/Linux).

Compiled executables may depend on external libraries

containing functions. R.exe was compiled from thousands

of C and Fortran files. Compiled binaries are usually much

faster, but interpreted scripts are more portable.

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 93 / 108

Choose the right software

• Do not write dead code

• Do not choose the tools where the difficult parts have

nothing to do with your research

We are in the process of digging ourselves into an

anachronism by preserving practices that have no ra-

tional basis beyond their historical roots in an earlier

period of technological and theoretical development.

Seymoure Papert, 1980.

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 94 / 108

Somewhere at SPSASsyViews, Inc.

Credit: Pieter Bruegel the Elder (1558).

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 95 / 108

Learn versatile tools

• Do no learn obscure or popular-but-limited packages

• Cryptic software users may view themselves as priests with

magical powers: ‘We are special, we can make it work’

• In reality, mastering something pointlessly hard rather

than making it easy perpetuates the hard nonsense

• R is not the only tool that is useful in your work –
multiple open-source tools chained together are the
best way to go: modular (not monolithic), always
accessible, flexible

• Example: pull PDF scans from server→ recognise and

extract text→ write stemmed keywords by group into data

set→ run regression→ generate colourful table

• R may help you with the parts in green

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 96 / 108

R as a programming language

R architecture

• Base R: console interface (bare-bones command line)

• One can either type the commands into the console or
save the commands as a script to execute as a whole

• Similar to interactive vs. batch jobs on Uni.LU HPC in SLURM

• Interpreted programming language, scripts should run

the same on Windows, Mac, Linux (unless there are

dependencies on external libraries; rare)

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 97 / 108

Standard workflow

1. Open RStudio, the great editor and IDE

2. Write some code – a script that

• Loads external data sources (Excel, CSV, text), pull the data

from the web, clean and merge the data sets

• Saves the transformed data for faster loading

• Creates variables and functions (user objects), use them

with the data to achieve the desired goal

• Exports estimates, tables, images, useful outputs

3. Save the script and load it next time

• Reproducible research: share the data and the script

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 98 / 108

Interacting with the outer world

• R can call other applications or interact with processes

• Integrates with JDemetra+, EViews, or any piece of software

that can be executed on that system

• Interaction with files via connections

• Create or open files for writing

• Pipe output to other processes

• Read data via URLs from the Internet

• Uses virtual devices (similar to the physical monitor
screen) for plotting when asked to save an image

• PDF / PNG files are connections

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 99 / 108

Interaction with other software

• Can export to other formats thanks to user packages

• Can be called from within Python via subprocess

• Can be called from within EViews via a connection

• Or vice versa, EViews can be called from within R

• Integration with gretl, Dynare

• C++ support out of the box with RTools

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023100 / 108

Beauty of R: multiple solutions

In R, there is no royal road to solving problems.

Various implementations might behave better or worse.

• Chain together certain operations into a function

• Find a package online with a function that does this (and
test whether it is working as intended on a simple
example)

• Use multiple packages with various functions

• It is fine to be inefficient and sloppy with coding if it
makes the workflow quicker (rapid proof-of-concept)

• Your overall time (writing + execution) and code clarity (for

others) are key!

• However, if a certain part is redone / re-run multiple times,

optimisation is desirable

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 101 / 108

Some R examples are sloppy (result)

This example was found online:

Credit: Worried-Bit5779 on Reddit.

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 102 / 108

https://www.reddit.com/r/rstats/comments/12184gt/formatting_legend/

Some R examples are sloppy (source)

The accompanying code came in one line (!), 612 bytes:

ggplot(swiss, aes(x = Education, y = Infant.Mortality)) +

geom_point(aes(shape = "Education", fill = "Education"),

size = 4, color = "darkorange") +

geom_point(aes(x = Agriculture, shape = "Agriculture",

fill = "Agriculture"), size = 4, color = "darkgreen") +

geom_point(aes(x = Catholic, shape = "Catholic",

fill = "Catholic"), size = 4, color = "navy") +

scale_color_manual(values = c("navy", "darkorange", "darkgreen")) +

scale_fill_manual(values = c("darkorange", "darkgreen", "navy")) +

labs(x = "Education", y = "Infant Mortality", shape = "Legend:",

color = "Legend:", fill = "Legend:") +

theme_classic()

• R does not have to be ugly spaghetti code

• If it looks redundant, there should be a better solution

• Move away from the ‘1 result← 1 command’ paradigm

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 103 / 108

Power of base R: no packages required

612 → 421 characters thanks to removed redundancies and

functions not doing extra unnecessary things that require

clean-up.

y <- swiss$Infant.Mortality

xs <- c("Education", "Agriculture", "Catholic")

cls <- c("darkorange", "darkgreen", "navy")

plot(swiss[, xs[1]], y,

pch = 15, col = cls[1], cex = 2, bty = "n",

xlab = xs[1], ylab = "Infant Mortality",

xlim = c(0, 100), ylim = c(10, 30))

points(swiss[, xs[2]], y, pch=16, col=cls[2], cex=2)

points(swiss[, xs[3]], y, pch=17, col=cls[3], cex=2)

legend("bottom", xs, col=cls, pch=15:17, pt.cex=2)

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 104 / 108

Plot produced by the cleaner code

421 characters of base R achieve the same result:

Note that the legend has no colouring error.

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 105 / 108

One step further: adding readability

612 characters of base R can do more:

Can you tell us a story from this plot?

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 106 / 108

Do not overgolf

Code golf: recreational programming to fit a programme

into the fewest bytes (real golf: fewest strokes win).

The same 421-byte code can be golfed into this 237-byte (!)

unreadable abomination (producing an identical plot):

s=swiss;y=s[,6];v=s[,c(4,2,5)];l=c("#ff8c00","green4","navy")

plot(0,0,bty="n",xla="Education",yla="Infant Mortality",xli=c(0,100),yli=c(10,30))

for(i in 1:3)points(v[,i],y,p=14+i,c=l[i],cex=2)

legend("bottom",names(v),co=l,pc=15:17,pt.c=2)

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 107 / 108

Further reading

• SPSS is dying. It’s time to change

• Python in 2021: The Good, The Bad, and the Ugly

• Binary to decimal converer

• A Deep Dive Into How R Fits a Linear Model

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023108 / 108

https://lindeloev.net/spss-is-dying/
https://new.pythonforengineers.com/blog/python-in-2021-the-good-the-bad-and-the-ugly/
https://www.rapidtables.com/convert/number/binary-to-decimal.html
http://madrury.github.io/jekyll/update/statistics/2016/07/20/lm-in-R.html

Thank you for your attention!

	Administrative formalities
	Comparison of statistical packages
	How computers compute and store data
	Programming concepts
	R as a programming language

	0.Plus:
	0.Reset:
	0.Minus:
	0.EndRight:
	0.StepRight:
	0.PlayPauseRight:
	0.PlayRight:
	0.PauseRight:
	0.PlayPauseLeft:
	0.PlayLeft:
	0.PauseLeft:
	0.StepLeft:
	0.EndLeft:
	anm0:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

