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Presentation structure

1. Forecasting time series

2. Multiple time series

3. Imputation
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Forecasting time series



Recall forecasting in ARMA models

𝑌𝑡 = 𝜇0 + 𝑈𝑡 +
𝑝

∑
𝑖=1
𝜑𝑖𝑌𝑡−𝑖 + 𝜑𝑝𝑌𝑡−𝑝 +

𝑞

∑
𝑗=1
𝜃𝑞𝑈𝑡−𝑞

Let Ω𝑡 denote all the information available up to 𝑡:
({𝑌𝑡}

𝑇
𝑡=1, guesses 𝑌 ≔ {𝑌0,… , 𝑌−𝑝+1}, 𝑈 ≔ {𝑈0,… , 𝑈−𝑞+1} and the

conditional values of 𝑈𝑡 denoted by �̂�𝑡 ≔ �̂�𝑡({𝑌𝑡}
𝑇
𝑡=1, 𝑌, 𝑈).

Forecast: conditional expectation 𝔼(𝑌𝑡+ℎ ∣ Ω𝑡).

𝔼(𝑌𝑡+ℎ ∣ Ω𝑡) is the BLP in linear specifications.

• 𝔼(𝑈𝑡 ∣ 𝑌𝑡−1,… , 𝑌𝑡−𝑝) = 0 ⇒ assume 𝑈𝑡+ℎ = 0 for ℎ ≥ 1

• Unlike cross-sectional �̂�𝑖 = 𝑋
′�̂�, in ARMA models,

�̂�𝑡 ≔ �̂�𝑡(𝑌𝑡, Ω𝑡−1) is computed from the formula above!
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ChatGPT: explain ARMA to a 7-year-old
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One-step forecasting in ARMA models

�̂�𝑡+1 ≔ �̂� +
𝑝

∑
𝑖=1
�̂�𝑖𝑌𝑡+1−𝑖 +

𝑞

∑
𝑗=1
�̂�𝑗�̂�𝑡+1−𝑗

• Plug {(𝑌𝑡, �̂�𝑡)}
𝑇
𝑡=1 into the formula above

• At time 𝑡, assume 𝑈𝑡+1 = 0
• At time 𝑡 + 1, compute �̂�𝑡+1 ≔ 𝑌𝑡+1 − �̂�𝑡+1 for further use in
the MA part once 𝑌𝑡+1 becomes known
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Static and rolling forecasts

• Static forecasts receive no new information at times
𝑡 + 1, 𝑡 + 2,… and converge to the long-run mean
𝜇/(1 − ∑𝑖𝜑𝑖)
• �̂�𝑡+2 = 𝑓(𝑌𝑡+1,…) uses �̂�𝑡+1 instead of 𝑌𝑡+1

• Rolling forecasts use future values 𝑌𝑡+1, 𝑌𝑡+2,… as soon
as they are observed

Rolling forecasts are sometimes called ARIMA filtering:
decompose the observed 𝑌𝑡+1 into contributions from its
lags, past errors etc. The unexplained part (forecast error)
becomes the model error.

• In R, arima() returns residuals {�̂�𝑡}
𝑇
𝑡=1
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Multi-step forecasting and filtering

Since SARIMA models are embarrassingly short-term, it only
makes sense to use extremely short horizons (1–2 points)
for forecasting (+𝑐 for models with a strong seasonal
component).

In practice, researchers often estimate a SARIMA model
once and then, use it to update �̂�𝑡+2, �̂�𝑡+3,… as soon as new
points become.

• If there is a calendar component, future values of the
calendar regressor are also required (easy with
JDemetra+ and its R interfaces – see Session 2)
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Seasonality and forecasting

Does seasonality help forecasting?

• The air temperature in late July 2025 can be reasonably
expected to be 30–35°

• However, climate scientists are interested in deviations
from the baseline (average of last 5–10 measurements)

Possible approach: predict 𝑇𝑡 with local polynomials (or
even linear functions), 𝑆𝑡 by extrapolating the MA filter of
the seasonal component, and 𝐼𝑡 with stationary ARMA
models.
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Multiple time series



Multivariate normal distribution (MVN)

Recall the univariate normal distribution with density
𝑓𝒩(𝑡) ≔

1
√2𝜋𝜎2

exp −(𝑡−𝜇)2

2𝜎2 .

Generalise it to the multi-variate Gaussian density:

𝑓𝒩(𝑡) ≔ (2𝜋)
−dim 𝑡/2(det Σ)−1/2 exp (−1

2
(𝑡 − 𝜇)′Σ−1(𝑡 − 𝜇))

Reproducing property: any linear combination of the
Gaussian vector is a Gaussian RV.

• Some textbooks even define the MVN in this manner
• The marginals of a MVN are also normal
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MM estimation of MVN distribution

The MVN distribution is computationally extremely
convenient – it is the only distribution for which the best
(ML) estimator is the set of these sample moments:

• Estimate 𝜇 with 𝑇−1 ∑𝑇𝑡=1 𝑌𝑡
• Estimate Σ with 𝑇−1 ∑𝑇𝑡=1(𝑌𝑡 − �̂�)(𝑌𝑡 − �̂�)

′

diag Σ = diag Var 𝑌𝑡, and the off-diagonal elements are
sample covariances �Cov (𝑌 (𝑖)𝑡 , 𝑌

(𝑗)
𝑡 ).
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Visualisation of the MV normal
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The contour lines of a MVN are elliptical – hence the name
‘spherical disturbances’ for multivariate Gaussian WN!
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Marginals of the MV normal

Since under joint normality, BLP(𝑌 ∣ 𝑋) = BP(𝑌 ∣ 𝑋), knowing
the value of one coordinate of a MVN vector reduced
uncertainty about other coordinates.
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Panel data

• Cross-sections: {𝑌𝑖}
𝑛
𝑖=1

• Time series: {𝑌𝑡}
𝑇
𝑡=1

• Panels: {{𝑌𝑖𝑡}
𝑇
𝑡=1}

𝑛
𝑖=1

• Stacked time series 𝑌𝑡 ≔ {𝑌
(1)
𝑡 ,… , 𝑌 (𝑛)𝑡 }𝑇𝑡=1

Typically, each unit has its own level (fixed effect) and its
own variances. Units often have cross-sectional
correlations: Cov(𝑌𝑖𝑡, 𝑌𝑗𝑡) ≠ 0.

In TS analyses, it is not uncommon (but not mandatory) to
scale the series to have zero mean unit variance.
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Common-factor model idea (skipped)

• Consider a wide panel with many time series
𝑌𝑡 ≔ {𝑌

(1)
𝑡 ,… , 𝑌 (𝑛)𝑡 }𝑇𝑡=1

• Suppose that they are driven by 𝑘 ≪ 𝑛 dynamic common
factors 𝐹𝑡 ≔ {𝑓

(1)
𝑡 ,… , 𝑓 (𝑘)𝑡 }

Then, an exact dynamic factor model is written as follows:

𝑌𝑡 = Λ(𝐿)𝐹𝑡 + 𝑈𝑡, Ψ(𝐿)𝐹𝑡 = 𝑉𝑡,

𝑈𝑡 and 𝑉𝑡 are serially uncorrelated with Var𝑈𝑡 = Σ𝑈 and
Var 𝑉𝑡 = 1⃗. Λ𝑖,⋅(𝐿)𝐹𝑡 is the common-factor contribution to 𝑌𝑖𝑡.

Identification: 𝔼𝐹𝑡𝑈𝑡 = 0, 𝐸(𝑈𝑡𝑉
′
𝑡−𝑘) = 0 ∀𝑘 (lags and leads).
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State-space models

Constant-parameter linear state-space model with 𝑘 state
variables and 𝑛 observed factors:

{
Ψ(𝐿)𝐹𝑡 = 𝑉𝑡 (state)
𝑌𝑡 = Λ(𝐿)𝐹𝑡 + 𝑈𝑡 (observation)

Var𝑈𝑡 = Σ𝑈, Var 𝑉𝑡 = Σ𝑉; in many applications, Σ𝑉 = 𝐼𝑘.

• ARIMA models and various smoothing filters
• Season-trend-irregular model (structural time series)
• Multivariate structural models, dynamic factor models
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Kalman filter

• The states / factors 𝐹𝑡 are unobserved and cannot be
simply recovered from the observed signals

• If the states are known, then, the signals can be
predicted by linear combinations of factors

• Estimation idea: pick such Ψ, Λ, and initial state guesses
that �̂�𝑡(𝐹𝑡) be close to the observed 𝑌𝑡

Not only 𝑌𝑡+1 can be forecast from the current state – the
missing entries in the middle can be filled in.
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Kalman filter workflow

Recall ARIMA models and generalise them:

1. An initial guess about the state variables (usually zero)
is made, ̂𝐹0

2. At 𝑡 = 1, the predicted states are computed, ̂𝐹𝑡
3. The predicted signals are computed, �̂�𝑡( ̂𝐹𝑡)
4. The prediction error is computed, �̂�𝑡: = 𝑌𝑡 − �̂�𝑡( ̂𝐹𝑡)
5. The prediction error is used to correct the state at the
present step with a Kalman gain (time-varying matrix),
̃𝐹𝑡 ≔ ̂𝐹𝑡 + 𝐾𝑡�̂�𝑡

6. Repeat from step 2 by predicting the state at 𝑡 + 1 using
the corrected present state ̃𝐹𝑡
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State updating in the Kalman filter

Estimating the mean of 𝑌𝑡 with no factors and no error
auto-correlation: 𝑌𝑡 = 𝑋𝑡 + 𝑈𝑡, 𝑋𝑡 = 𝑐, 𝑈𝑡 ∼ 𝒩(0, 1).

1. Assume 𝑋0 = 0 ⇒ 𝑋1 = 0 is the predicted state
2. �̂�1 = 𝑌1 − 0 = 𝑌1
3. Correct the state with a Kalman gain of 1, ̃𝑋1 = 𝑌1
4. At 𝑡 = 2, the predicted state is �̂�2 = 𝑌1, �̂�2 = 𝑌2 − 𝑌1, and
the Kalman gain is 1/𝑡 = 1/2

5. ̃𝑋2 = 𝑌1 + (𝑌2 − 𝑌1)/2 = (𝑌1 + 𝑌2)/2

Simplest Kalman filtering: adjust the estimate of the mean
by 1/𝑡 times the difference between the observed 𝑌𝑡 and
predicted state (sample average of (𝑡 − 1) terms of 𝑌𝑡).
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Motivation for principal components

State-space models are often hard to interpret: whatever
unobserved guesses minimise the measurement error is the
‘state’.

• The dimensionality of the state space is unknown, the
mechanisms are potentially non-linear⇒ virtually
everything is unknown in SSMs

• We want to create one informative index variable from
the observable ones

• Create a linear combination of variables that has the
highest variability (= information content)
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Sufficient dimensionality reduction

Imagine a high-dimensional problem: the dependent
variable 𝑌𝑡 may or may not depend on other variables 𝑋𝑡.
How to select the relevant variables and keep the problem
low-dimensional without losing too much information?

Suppose that dim𝑋𝑡 = 𝑛 ≫ 𝑇 is high. Consider a fixed matrix
B𝑘×𝑛 with a small row dimension 𝑘 such that
𝔼(𝑌𝑡 ∣ 𝑋𝑡) ≈ 𝔼(𝑌 ∣ B𝑋𝑡) and 𝑘 ≪ 𝑇.

More generally, consider finding such B that 𝑌𝑡 be
conditionally independent of 𝑋𝑡 once the effects of B𝑋𝑡 have
been taken into account (recall the FWL theorem).
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PCA minimisation problem

Given any vector of 𝑛 variables {𝑌 (1)𝑡 ,… , 𝑌 (𝑛)𝑡 }, remix it into
𝑛 linear combinations {𝑃(1)𝑡 ,… , 𝑃

(𝑛)
𝑡 }:

• The coordinates of 𝑃𝑡 are orthogonal

• Var∑𝑖 𝑌
(𝑖)
𝑡 = Var∑𝑖 𝑃

(𝑖)
𝑡 = ∑𝑖 Var 𝑃

(𝑖)
𝑡

• Var 𝑃(1) is the highest possible variance under the
aforementioned constraints

This ‘remixing’ through linear combinations is often called
‘rotation’ and denoted via the rotation matrix R𝑛×𝑛.

Example: regress the child height not onto father’s and
mother’s height, but their average height and height
difference.
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PCA technical representation

• Estimate Σ ≔ Cov 𝑌𝑡 (or better, Cor 𝑌𝑡)

• Calculate eigenvalues and eigenvectors of Σ̂
• Eigenvalues det(Σ̂ − 𝜆𝐼𝑛) = 0
• Eigenvectors: (Σ̂ − 𝜆𝐼𝑛)𝑣 = 0

• Sort the eigenvalues, take the eigenvector
corresponding to the largest eigenvalue

• Take a linear combination of 𝑌𝑡 with weights given by
this eigenvector

Then, Var∑𝑖 𝑌
(𝑖)
𝑡 = ∑𝑖 Var 𝑃

(𝑖)
𝑡 = ∑𝑖 𝜆𝑖.
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PCA intuition

PCA is equivalent to fitting a multivariate normal
distribution to the data and then, projecting them onto the
principal axes of the ellipse.

• Dimensionality reduction for a 3D bottle: only the
vertical dimension (level of liquid) contains useful
information

• Dimensionality reduction for a 3D pizza: two out of three
dimensions (top view) contains information about the
remaining pizza

If the data do not look like multivariate ellipses, PCA may
produce strange results.
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Practical aspects of PCA

• Variance manipulations make sense only for finite
variances⇒ only stationary variables should be
transformed

• No universal rule ‘how many components should one
take’
• Reducing 2000 stocks into 30 portfolios is a good idea
• As long as 𝜆𝑖 > 1, there is dimensionality reduction
• Psychological level: 70%? 90%?
• Best: some application-driven criterion (via
cross-validation)

• If the correlation structure changes, chunking /
localisation may yield an improvement
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Example: petrol (SP95) prices

1.
0

1.
4

1.
8

P
_L

U

1.
2

1.
6

2.
0

P
_D

E

1.
2

1.
6

2.
0

P
_B

E

1.
4

1.
8

2010 2014 2018 2022

P
_F

R

−
0.

15
0.

00
0.

15

P
_L

U

−
0.

1
0.

1
0.

3

P
_D

E

−
0.

15
0.

00
0.

15

P
_B

E

−
0.

2
0.

0
0.

2

2010 2014 2018 2022

P
_F

R

Topics in time-series analysis. © Andreï V. Kostyrka, Université du Luxembourg, 2024 24 / 38



Correlation-based PCA in R

dp <- diff(fuel_prices)

p <- prcomp(dp, scale. = TRUE)

str(p) # A list

$ sdev : num [1:4] 1.78 0.76 0.42 0.29

$ rotation: num [1:4, 1:4] -0.541 -0.415 ...

$ center : Named num [1:4] 0.0039 0.0041 0.0031 0.0024

..- attr(*, "names")= chr [1:4] "P_LU" "P_DE" "P_BE" "P_FR"

$ scale : Named num [1:4] 0.047 0.057 0.05 0.053

$ x : num [1:153, 1:4] 0.19 -2.287 -1.22 0.038 0.484 ...

The components are stored in the $x list element, and the
linear combination weights in $rotation.

In this example, since the series are quite similar,
𝑃(1) = 0.54Δ𝑌LU + 0.42Δ𝑌DE + 0.53Δ𝑌BE + 0.50Δ𝑌FR.
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Scree plots
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Imputation



Missing data

• Real time series contain missing values
• Guessing the missing values is called imputation
• The missingness mechanism can be random or
non-random
• In cross-sectional model, missingness completely at
random (MCAR) does not create biases (merely reduces the
effective sample size)

• Missingness at random (conditionally on exogenous
variables) leads to inefficiency but not bias

• Missingness at random (conditionally on all observable
regressors, MAR) may lead to biases if not addressed

• Missingness non at random requires extra fortifying
assumptions to enable identification
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Imputation basics

• Consider the stock prices of a medium-cap company.
Long periods with zero trades⇒ no price observed⇒
no 5-minute returns for high-frequency traders
• Structural solution: extrapolate the previous observed
values of price⇒ zero price changes, zero trade volume

• In many cases there are no natural ways to carry out
imputation, and one need models for accurate guessing
• Guesswork mixes the true DGP with the imputation model

• Nowcasting: predicting past or present values
• Delays in collection of statistics, ‘ragged’ panel edges
• GDP: quarterly, labour data: monthly. Can we reconstruct
the monthly GDP by observing the co-evolution of the two
mixed-frequency series?

In the TS context, missingness may create extra biases.
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Imputation using ARMA

• If there are gaps inside a time series, one can estimate
the model on the data before the gaps and use
predictions for the imputed values
• Some researchers add lead values of 𝑌𝑡 to the ARMA model
to improve imputation accuracy:
𝑌𝑡 = 𝜇 + 𝜑1𝑌𝑡−1 + 𝜉1𝑌𝑡+1 + 𝑈𝑡 + 𝜃1𝑈𝑡−1

• Another approach: insert some values (e g. median) and
estimate SARIMA with additive outliers
• ARIMA filtered values can be used for imputation

• TRAMO-SEATS-like: remove 𝑆𝑡, extract 𝐼𝑡, impute it,
extrapolate 𝑇𝑡 and 𝑆𝑡, combine all
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Imputation using Kalman filtering

• Write the trend + seasonal + SARIMA model in the
state-space representation

• Apply the Kalman filter to predict the next state
• Compute 𝑇𝑡, 𝑆𝑡, 𝐼𝑡 from the state values

See Hyndman, Koehler, Ord, Snyder (2008) for details and
the imputeTS package.
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Imputation using PCA

For several time series, iterate:

• Substitute the missing values by something (e. g. the
mean or (𝑌𝑡+1 + 𝑌𝑡−1)/2

• Apply PCA to these multivariate time-series (compute
the rotation matrix)

• Using the chosen number of components 𝑘 and
singular-value decomposition (SVD), reconstruct 𝑌𝑡

• Iterate until convergence

In R, use the missMDA package.
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Multiple imputations

So far, we have been making point forecasts / predictions
based on the model and asymptotic theory for inference.

• Recall: Var �̂�𝑡 ≤ Var 𝑌𝑡 because of the multivariate
Pythagorean theorem (�̂�𝑡 is a linear projection of 𝑌𝑡 onto
the linear space of Ω𝑡−1)
• Estimation uncertainty: the estimates are not the truth

• Under-estimating the second-order uncertainty:
𝑇−1 ∑𝑡(𝑌𝑡 −𝑚)

2 is minimised at the sample average

Recall forecast combination: combining many guesses
based on different models improves accuracy. Can we add
some randomness to guesses to gauge the impact of these
uncertainties on the forecast?
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Resampling methods

General idea: sample from the conditional distributions
𝑓(𝑌 (1) ∣ 𝑌 (−1); 𝜃1), …, 𝑓(𝑌

(𝑛) ∣ 𝑌 (−𝑛); 𝜃𝑛), where 𝜃1,… , 𝜃𝑛 are
the parameters of the conditional distributions, not
necessarily linked to the true joint distribution 𝑓𝑌.

• Choose the components (possibly all) to impute 𝑌 (𝑖),
assume some convenient conditional distribution that
depends on 𝜃𝑖

• Approximate the distribution of 𝜃𝑖, draw �̂�𝑖 from it,
predict the missing values
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Multiple imputation for multiple TS

Using sufficient dimensionality reduction, use one of the
following algorithms:

• MI with regularised regression
• MI with sequential penalised regression
• MI with recursive partitioning and predictive mean
matching

• MI with PCA
• Flavours: simple; bootstrapped with generalised CV;
bayesian MI + regularised PCA
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AMELIA II algorithm

Assuming (1) multivariate normality of the data and
(2) missingness at random (conditioning on observables):

• Use a black box (the EM algorithm + bootstrap) to
estimate parameters of the multivariate joint
distribution

• Iteratively, draw the guesses from the conditional
distributions at random

• With different initial seeds, obtain 𝑚 data sets
• Run the analysis many times, analyse the stability of
estimates under various random guesses
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Imputation diagnostics

• Plot the imputed time series and their differences!
• Densities: compare the distributions of the observed
and imputed values

• Over-imputation: add several missing values and see
how well they are guessed

• Over-dispersion: for multiple-imputation algorithms, try
‘wilder’ initial values and analyse the convergence
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What you can do now
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Final advice

• Plot the object of study before and after applying
statistical methods

• Think about all possible dependencies between the
variables, and then, make simplifying assumptions
• From general to specific

• Write modular code, convenience wrappers, macros
• Never fall in love with your models and never assume
that a model is the ultimate reality decomposition
• Try many models and many approaches
• Explore new packages and new methods
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Thank you for your attention!
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