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Presentation structure

1. Showing common examples of problems with missing
data in endogenous variables.

2. Discussing parameter identification.
3. Deriving the e�ciency bounds.
4. Specifying the e�cient estimator.
5. Presenting the simulation results.



Motivation behind our work

• Standard statistical methods have been developed to
analyse rectangular data sets.

• In practice, often data entries for dependent and
endogenous variables are missing:
• Households might refuse to report income;
• Individuals might report nothing instead of nutrient

intake in human productivity studies.
• Not so many works have dealt with this issue recently.

• Chen, Hong, Tarozzi (2008, AoS), Graham (2011, Ecta)
consider only unconditional restrictions.

• Hristache, Patilea (2017, Biometrika) provide theoretical
results (but no e�ciency bound) for CMR models.

• Our contribution: derive the semi-parametric e�ciency
bound in CMR models with missing endogenous
variables and propose an estimator that attains it.
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Basic one-sample model

• Many econometric models can be written in the form
E[g(Y∗, Z, X, θ∗) | X] = 0,

where θ∗ is the parameter vector of interest.
Y∗ contains endogenous variables (outcome or
explanatory) that are not observed for some units.
Z and X are vectors of always observed endogenous and
exogenous variables respectively.

• However, the observed version of Y∗ is

Y def
= DY∗ + (1− D)m,

where D = 1 if all coordinates of Y∗ are observed
(0 otherwise) and m is a symbol for missing values
(e. g. ‘−999’, ‘NA’, ‘.’ in packages and survey codebooks).
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Estimation objective

• Using observations
(Yi,Di, Xi, Zi)ni=1, e�ciently
estimate θ∗ and average
partial e�ects w. r. t. X.

• An example data set can
be seen on the right.

Z X D Y Y∗

2.66 0.34 1 3.50 3.50
1.94 0.37 1 2.12 2.12
1.05 0.38 0 m 2.09
−0.98 0.38 1 −0.52 −0.52

0.91 0.38 0 m 1.37
1.92 0.39 0 m 3.24
4.15 0.50 1 5.06 5.06
1.42 0.57 1 2.36 2.36
2.39 0.63 1 3.35 3.35
1.59 0.65 0 m 2.53
−0.48 0.66 1 −0.28 −0.28

1.18 0.69 0 m 1.70
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Examples of the one-sample problem

• IV regression with missing outcomes:
E(wage∗ − α∗ − X′inclβ

∗ − γ∗education | Xincl, Xexcl) = 0
Example: estimating returns to education.

• IV regression with missing endogenous explanatory
variables:
E(ART− α∗ − X′inclβ

∗ − γ∗mental health∗ | Xincl, Xexcl) = 0
Example: estimating the e�ect of mental health status
(not always reported) on anti-retroviral treatment
adherence.
Example: estimating the e�ect of infant health (often
unknown) on labour market outcomes.
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Identifying assumptions

Recall the model in the one-sample case:
E[g(Y∗, Z, X, θ∗) | X] = 0, D = 1 if Y = Y∗, D = 0 if Y = m

We assume missingness at random (MAR):
D ⊥⊥ (Y∗, Z) | X

The missingness indicator D is conditionally independent
of Y∗ and the always observed endogenous variables Z.

Then, define π(X) def
= E(D | X) to be the unknown

propensity score function with 0 < π(X) < 1.
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Identification

Whilst g(Y∗, Z, X, θ∗) cannot be evaluated since Y∗ is not
observed, it can be shown that, by the MAR assumption,

0 = E[g(Y∗, Z, X, θ∗) | X] = E[g(Y∗, Z, X, θ∗) | X,D = 1]

= E
[
Dg(Y∗, Z, X, θ∗)

π(X)

∣∣∣ X]
Under MAR, the validation sample (VS, where D = 1) alone
is enough to identify θ∗.
Problem? E�ciency is lost.
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Main theoretical result

The e�cient estimator must use the information from the
full sample. The model yielding such an estimator is
based on the transformed moment function ρ:

E[ρ(A, θ∗, π, µ) | X] = 0, where

ρ(A, θ∗, π, µ) def
=
Dg(Y, Z, X, θ∗)

π(X) − µ(Z, X, θ∗)
( D
π(X) − 1

)
,

A def
= (Y, Z,D, X), µ(Z, X, θ∗) def

= E[g(Y∗, Z, X, θ∗) | Z, X].

l.b.(θ∗)|ρ ≤ l.b.(θ∗)|g
An asymptotically e�cient estimator beats (in the sense
of Chamberlain, 1987, JoE) any estimator constructed
using the validation sample alone!
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Implications for estimation

• The e�ciency gains measured by the ratio
l.b.(θ∗)|g / l.b.(θ∗)|ρ are due to the presence of the
non-missing endogenous variables.
• If there are no endogenous variables in the model that

are not missing, i. e. all of the endogenous variables in
the model are missing, then estimating θ∗ using the VS
alone is asymptotically e�cient.

• π(X) can be fully unknown, and should always be
estimated non-parametrically even if it is known up to a
finite-dimensional parameter or fully known.
• Estimating π and µ non-parametrically does not a�ect

the asymptotic distribution of the estimator.
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Estimation method

• Smoothed Empirical Likelihood (SEL, proposed by
Kitamura, Tripathi & Ahn, 2004, Ecta) extends the
Empirical Likelihood, a non-parametric method for
testing and estimating (Owen, 1988, Biometrika).

• Parametric restrictions can be tested using a
non-parametric version of Wilks’ theorem (Qin and
Lawless, 1994, Ann. Stat.). EL ratio statistics do not need
to be explicitly studentised.

• SEL extends the properties of EL to estimating model
characterised by conditional moment restrictions
(Kitamura & Tripathi, 2003, Ann. Stat.), and SEL-based
estimators attain the semi-parametric e�ciency
bounds.
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Implementation of our estimator

In order to take into account conditioning, we construct
kernel weights (with bandwidth b)

wij
def
=

Kb(Xi − Xj)∑n
k=1 Kb(Xi − Xk)

, i, j = 1, . . . ,n.

The SEL estimator solves the optimisation problem:

max
θ
−

n∑
i=1

max
λi

n∑
j=1

wij log
(
1 + λ′iρ̂(Aj, θ)

)
.

Numerical optimisation can be used to solve both
maximisation problems.
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Non-parametric imputation

Since ρ(Y, Z,D, X, θ, π, µ) depends on unknown functions,
π(X) def

= E(D | X) and µ(X, Z, θ) def
= E[g(Y∗, Z, X, θ) | Z, X], they

can be estimated via kernel regression methods
(i. e. Nadaraya—Watson estimator):

π̂(X) def
=

∑n
k=1 DkKc1(Xk − X)∑n
k=1 Kc1(Xk − X)

,

µ̂(Z, X, θ) def
=

1
π̂(X)

∑n
k=1 Dkg(Yk, Zk, Xk, θ)Kc2(Zk − Z, Xk − X)∑n
k=1 Kc2(Zk − Z, Xk − X)

,

where Kc1(·),Kc2(·) are kernel functions and c1, c2 are
bandwidths.
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Inference

• The SEL approach provides a convenient unified
environment for testing hypotheses about θ∗ using the
likelihood ratio: LR(θ) def

= 2[SEL(θ̂)− SEL(θ)].
• Consider any parametric restrictionH0 : R(θ∗) = 0. Then,

maximise the SEL under the constraint:
θ̂R

def
= argmax

θ : R(θ)=0
SEL(θ).

• Reject H0 if LR(θ̂R) > Qχ2
dim R

(α) for the desired level α.
• The LR statistic can be inverted to obtain asymptotically

valid confidence regions: {θ : LR(θ) ≤ Qχ2
dim θ

(α)}.
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Simulation results (discrete design)

Y∗ = 1+1 ·Z+Uσ(X), E(U | X) = 0
Missingness only in Y∗,
1 discrete endogenous variable Z,
1 discrete excluded instrument X.
X ∼ Bernoul(0.6), Z = I(X + V > 0)(
U
V

)
∼ N

[(
0
0

)
,

(
1 1
1 2

)]
π(X) = 0.9X + 0.25(1− X)
σ2(X) = X + 16(1− X)
Max. gains: 31%, missing: 36%
Example: e�ect of treatment (Z)
with eligibility indicator X.
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Objective function behaviour

SEL(θ) might look similar in the VS and full sample. . .

VS only n = 500 Full sample
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SEL-based confidence regions

. . . but the implications for inference are huge!
⊕ denotes the true value, • denotes the estimate.
Levels: 50%, 95%, 99.9%.
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LR statistic for the slope (VS only)

If only the validation sample is used, then the confidence
intervals (even although asymptotically valid) may be
unbounded in finite samples.

−10 −5 0 5

0
2

4
6

8

Qχ1
2(0.9)

Qχ1
2(0.95)

Qχ1
2(0.99)

Estim. True

1 SE

−60 −40 −20 0

0
2

4
6

8

Qχ1
2(0.9)

Qχ1
2(0.95)

Qχ1
2(0.99)

Estim.True

1 SE

0
2

4
6

8

Qχ1
2(0.9)

Qχ1
2(0.95)

Qχ1
2(0.99)

−1e+06 −10000 −100 −10

16 / 22



Profile LR comparison
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Monte-Carlo simulation summary

10,000 simulations for each sample size. Theoretical
gains: 31%. Slope estimator statistics are reported.
VS: validation-sample-only, FS: full-sample e�cient.

n Est. Bias SD Med. AD Gains
Med. Mean ratio

500 FS 0.049 −0.047 2.018 1.000 546%
VS −0.032 −0.570 5.100 1.163

2000 FS 0.032 0.013 0.969 1.000 44.6%
VS 0.013 −0.078 1.162 1.170

8000 FS 0.001 −0.002 0.479 1.000 35.2%
VS −0.003 −0.027 0.556 1.171
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Estimator distribution

The smoothed density of the centred slope estimator
(solid for VS, dashed for FS e�cient) is shown below.

−6 −4 −2 0 2 4 6 −6 −4 −2 0 2 4 6 −6 −4 −2 0 2 4 6

n = 500 n = 2000 n = 8000
The full-sample estimator is more tightly concentrated around
the true value, has thinner tails, and looks Gaussian.
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Confidence interval summary

Coverage probability Bounded
n Est. Nominal Empirical Length intervals (%)

.90 .905 7.1 100
FS .95 .953 8.7 100

500 .99 .991 12.6 100
.90 .898 16.0 96.9

VS .95 .953 24.6 94.2
.99 .991 82.5 83.9
.90 .896 3.2 100

FS .95 .951 3.9 100
2000 .99 .990 5.2 100

.90 .899 3.9 100
VS .95 .950 4.8 100

.99 .990 6.7 100
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Further work

• Run simulations with continuously distributed
regressors.

• Handle the bandwidth issue for non-parametric
prediction via smoothing.

• Show consistency, e�ciency, and asymptotic normality
of the estimator.

• Apply the method to a real data set.

21 / 22



Conclusions

• We show that if at least one of endogenous variables in
the models contains missing values, and if not all
endogenous variables are missing, then there are
e�ciency gains compared to the classical
complete-case approach, and derive the bound.

• We propose an estimator that attains said e�ciency
bound.

• We test its performance in practice and find that it
yields empirical gains close to theoretically expected
ones.
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.

Thank you for your attention!
Questions?


