A new solution for computing quick and accurate numerical derivatives

Results from the working paper: Kostyrka, A. V. (2024). What are you doing, step size: Fast computation of accurate numerical derivatives with finite precision.

Andreï V. Kostyrka

UNIVERSITÉ DU LUXEMBOURG

Department of Economics and Management (DEM)

Brown-bag seminar series Faculty of Law, Economics, and Finance (FDEF) University of Luxembourg 28th of May 2024

Presentation structure

- 1. Motivation and empirical applications
- 2. Approximations of analytical derivatives
- 3. Error sources in numerical derivatives
- 4. Approaches to step size selection
- 5. Showcase of the new package

Motivation and empirical applications

Contribution

I extend the existing software ecosystem and numerical-methods literature by:

- 1. Creating an open-source R package for fast, parallelised numerical differentiation
 - First open-source parallel Jacobians, Hessians and higher-order-accurate gradients
- 2. Deriving analytical error bounds and optimal step-size rules for higher-order-accurate derivatives and second-order-accurate Hessians
- 3. Implementing previously proposed algorithms of step-size estimation, benchmarking their relative performance, and suggesting improved modifications

Motivation and research question

- Researchers rely on optimisers, algorithms, black boxes etc. to 'solve' their models and carry out inference
- The end result is highly dependent on the solver quality
- Most popular modern optimisation techniques use numerical derivatives for minimisation or maximisation

However, most software implementation yield **inaccurate** and **slow** numerical derivatives.

How can we attain the hardware-dependent accuracy bound for numerical derivatives?

Consequences of inaccurate derivatives

- Inexact solutions, values not at the optimum
- Wrong asymptotic-approximation-based inference
 - Wrong standard errors and *p* values in non-linear models
- Worst case: negative Hessian-based variances

Example from a financial application

Simple AR(1)-GARCH(1, 1) model for NASDAQ log-returns, 1990–1994:

$r_t = \mu + \rho r_{t-1} + \sigma_t U_t, \sigma_t^2 = \omega + \alpha U_{t-1}^2 + \beta \sigma_{t-1}^2$									
Coefficient	Est.	<i>t</i> -stat (rugarch)	<i>t-</i> stat (fGarch)	<i>t</i> -stat (manual)					
μ	0.0007	2.34	2.31	2.33					
ρ	0.24	7.77	7.73	7.73					
$\omega \times 10^3$	0.0098	NaN or 65	3.09	3.08					
α	0.13	11.1	4.27	4.26					
β	0.73	39.6	10.9	11.0					

Gradients, Jacobians, Hessians in economics

- Gradient: marginal effects and causal interpretation
 - It is common to numerically estimate the response of Y to a small change X in large systems of interdependent equations
- Hessian: standard errors in semi-parametric and parametric models (non-linear least squares, GMM, maximum likelihood: probit, logit, heckit...)
- Jacobian: must be supplied in constrained-optimisation problems (optimisation subject to $g(\theta) = 0, h(\theta) \ge 0$)
- Numerical optimisation with steepest-descent / hill-climbing methods

Necessary in any model that is not linear in parameters.

You have encountered numerical algorithms

12 heckman — Heckman selection model

. use https://www.stata-press.com/data/r18/twopart									
. heckman yt x1 x2 x3, select(z1 z2) nonrtol									
Iteration 0:	Log likelihoo	d = -111.949	96						
Iteration 1:	Log likelihoo	d = -110.822	58						
Iteration 2:	Log likelihoo	d = -110.177	07						
Iteration 3:	Log likelihoo	d = -107.706	63 (not	concave)				
<pre>Iteration 4: Log likelihood = -107.07729 (not concave) (output omitted)</pre>									
Iteration 36:	Log likelihoo	d = -104.08	25						
Heckman selection model					of obs =	150			
(regression model with sample selection)				S	elected =	63			
(8)					onselected =	87			
				Wald ch	i2(3) =	8.84e+08			
Log likelihood = -104.0825					chi2 =	0.0000			
LOG 11Ke111000104.0825						0.0000			
yt	Coefficient	Std. err.	z	P> z	[95% conf.	interval]			
yt									
x1	.8974192	.0002164 4	146.52	0.000	.896995	.8978434			
x2	-2.525303	.0001244 -2	.0e+04	0.000	-2.525546	-2.525059			
xЗ	2.855786	.0002695 1	.1e+04	0.000	2.855258	2.856314			
_cons	.6975003	.0907873	7.68	0.000	.5195604	.8754402			

Quick and accurate numerical derivatives. A. V. Kostyrka, Université du Luxembourg, 2024-05-28

Existing literature / software

- Gerber & Furrer (2019). optimParallel: An R Package Providing a Parallel Version of the L-BFGS-B Optimization Method. The R Journal 11 (1). cran.r-project.org/package=optimParallel
 - Limited to the built-in
 optim(..., method = "L-BFGS-B")
- Textbooks on linear algebra, calculus, and numerical analysis
- Papers on computer algorithms from the 1970s
- Hong, Mahajan & Nekipelov, (2015, *JoE*). Extremum estimation and numerical derivatives.

Non-existent literature / software

- Most modern articles focus on ultra-high-dimensional numerical gradients with much fewer evaluations
 - Only one (!) paper (Mathur 2012, Ph. D. thesis) with a comprehensive treatment of the classical case useful for low-dimensional models
- Existing algorithms (Curtis & Reid 1974, Dumontet & Vignes 1977, Stepleman & Winarsky 1979) lack open-source implementations
 - Popular software packages implement very rough rules and do not refer to any optimality results in the literature
- Most implementations of higher-order and cross-derivatives are through repeated differencing
 - Slower and less accurate than the best solution

Partial solutions

- R packages numDeriv and optimParallel
 - numDeriv: the most full-featured arsenal in terms of accuracy, but slow; optimParallel: speed gains but no focus on accuracy
- Python's numdifftools
 - Discusses Richardson extrapolation; no error analysis
- MATLAB's Optimisation Toolbox
 - Focuses on parallel evaluation, not accuracy
- Stata's deriv
 - Implements a step-size search to obtain 8 accurate digits

Derivatives in linear models

 $\begin{aligned} \textit{FUELSALES} &= \beta_0 + \beta_1 P_{Lux} + \beta_2 P_{abroad} \\ &+ \beta_3 \textit{COMMUTERS} + \beta_4 \textit{LOCKDOWN} + U \end{aligned}$

- Exogeneity assumption:
 E(U | P_{Lux}, P_{abroad}, COMMUTERS, LOCKDOWN) = 0
- $\frac{\partial}{\partial P_{abroad}} \mathbb{E}[FUELSALES \mid P_{Lux}, P_{abroad}, \dots] = \beta_2$ by exogeneity
- Causal interpretation: if the foreign fuel price changes by 1 €, fuel sales will change by β₂ units ceteris paribus (including U)

Derivatives in non-linear models

Economic vulnerability model for women over 50:

$$\begin{split} Y^{*} &= \alpha_{0} + \gamma_{1} EducYears + \gamma_{2} NonWhite \\ &+ \gamma_{3} EducYears \times NonWhite + X'\beta_{0} + U := \tilde{X}'\theta_{0} + U \\ Y &:= \begin{cases} 1, & Y^{*} > 0, \\ 0, & Y^{*} \leq 0, \end{cases} \quad \mathbb{P}(Y = 1 \mid \tilde{X}) = F_{U}(\tilde{X}'\theta_{0}), \quad U \sim \mathcal{N}, \Lambda, \dots \\ &\frac{\partial \mathbb{P}(Y = 1 \mid \tilde{X})}{\partial EducYears} = f_{U}(\tilde{X}'\theta_{0}) \cdot (\gamma_{1} + \gamma_{3} NonWhite) \\ &\frac{\partial \mathbb{P}(Y = 1 \mid \tilde{X})}{\partial NonWhite} = f_{U}(\tilde{X}'\theta_{0}) \cdot (\gamma_{2} + \gamma_{3} EducYears) \end{split}$$

Inference on γ_3 is not intuitive.

Inference in non-linear models

Policy-makers are interested in the effects due to changes in *explanatory variables*, not parameters.

Average partial effect of the k^{th} variable: $\mathbb{E} \frac{\partial}{\partial x^{(k)}} \mathbb{P}(Y = 1 | \tilde{X})$.

Its straightforward estimator is $\frac{1}{n}\sum_{i=1}^{n} \frac{\partial}{\partial X^{(k)}} \hat{\mathbb{P}}(Y_i = 1 | \tilde{X}_i)$.

Embarrassingly parallel task: a problem that can be split into smaller problems that can be solved in parallel with no communication between the processes.

- Computing the *n*-dimensional derivative vector $\left\{\frac{\partial}{\partial X_i^{(k)}} \hat{\mathbb{P}}(Y_i = 1 | \tilde{X}_i)\right\}_{i=1}^n$ is embarrassingly parallel
- Inference on θ_0 based on the Hessian of the log-likelihood is embarrassingly parallel

Quick and accurate numerical derivatives. A. V. Kostyrka, Université du Luxembourg, 2024-05-28

Complications in non-linear models

- *F_U* is often confined to a specific family (Poisson, exponential, Gaussian, logistic etc.)
 - This parametric assumption could be wrong
 - A more flexible approximation of the true distribution of *U* may not have a manageable closed-form derivative
- Most data-generating process in economics are highly non-linear and hard-to-formalise
 - Non-linear high-dimensional models tend to have a better explanatory power and yield more accurate forecasts
 - Loss of parameter interpretability
 - Numerical derivatives are often the only solution

Approximations of analytical derivatives

Derivative of a function

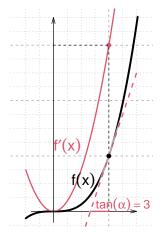
Derivative: The instantaneous rate of change of a function.

$$f'(x) = \frac{\mathrm{d}f}{\mathrm{d}x} := \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Assume that *f* is differentiable and therefore continuous.

f'(x) is the slope of the tangent line to the graph at x.

Illustration:
$$f(x) := x^3$$
, $f'(x) = 3x^2$.
 $f(1) = 1$, $f'(1) = 3$. The tangent
equation at $x = 1$ is $3x - 2$.



Naïve numerical derivatives

In the definition

$$f'(x) := \lim_{h \to 0} \frac{f(x+h) - f(x)}{h},$$

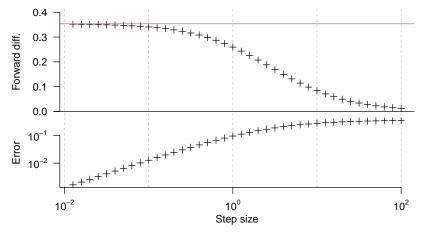
remove the limit to obtain a forward difference:

$$f'_{\rm FD}(x,h) := \frac{f(x+h) - f(x)}{h}$$

Choose a sequence of decreasing step sizes h_i (e.g. {0.1, 0.01, 0.001, ...}), observe the sequence $f'_{FD}(x, 0.1), f'_{FD}(x, 0.01), f'_{FD}(x, 0.001), ...$ converge to f'. We revisit this expression in Slide 25.

Naïve numerical derivatives in practice

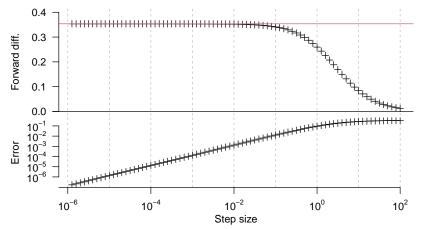
Mathematically, $f'_{FD}(x, 0.1)$, $f'_{FD}(x, 0.01)$, $f'_{FD}(x, 0.001)$, ... converges to f'(x).



Quick and accurate numerical derivatives. A. V. Kostyrka, Université du Luxembourg, 2024-05-28

Naïve numerical derivatives in practice

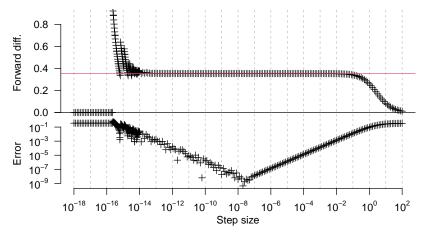
Mathematically, $f'_{FD}(x, 0.1)$, $f'_{FD}(x, 0.01)$, $f'_{FD}(x, 0.001)$, ... converges to f'(x).



Quick and accurate numerical derivatives. A. V. Kostyrka, Université du Luxembourg, 2024-05-28

Naïve numerical derivatives in practice

Mathematically, $f'_{FD}(x, 0.1)$, $f'_{FD}(x, 0.01)$, $f'_{FD}(x, 0.001)$, ... converges to f'(x). But not true in practice!



Gradient of a function

Gradient: column vector of partial derivatives of a differentiable scalar function.

$$\nabla f(x) := \begin{pmatrix} \frac{\partial f}{\partial x^{(1)}}(x) \\ \vdots \\ \frac{\partial f}{\partial x^{(d)}}(x) \end{pmatrix}$$

- Vector input x + scalar output f = vector ∇
- At any point *x*, the gradient the *d*-dimensional slope is the **direction and rate of the steepest growth** of *f*

'A source of anxiety for non-mathematics students.' J. Nash, 'Nonlinear Parameter Optimization' (2014).

Visualisation of a gradient

Jacobian of a function

Jacobian: Matrix of gradients for a vector-valued function f. If dim x = d, dim f = k, $\nabla f(x) := \left(\frac{\partial f}{\partial x^{(1)}}(x) \cdots \frac{\partial f}{\partial x^{(d)}}(x)\right)_{k \times d} = \begin{pmatrix} \nabla^T f^{(1)}(x) \\ \vdots \\ \nabla^T f^{(k)}(x) \end{pmatrix}_{k \times d}$

- Vector input x + vector output f = matrix ∇
- In constrained problems, most solvers (e.g. NLopt) for min_x f(x) s.t. g(x) = 0 require an explicit ∇g(x)
 Including incorrectly computed derivatives (mostly gradients or Jacobian matrices) <...> explains almost all the 'failures' of optimisation codes I see. (Idem.)

Hessian of a function

Hessian: Square matrix of second-order partial derivatives of a twice-differentiable scalar function.

$$\nabla^2 f(x) := \left\{ \frac{\partial^2 f}{\partial x^{(i)} \partial x^{(j)}} \right\}_{i,j=1}^d = \begin{pmatrix} \frac{\partial^2 f}{\partial x^{(1)} \partial x^{(1)}} & \cdots & \frac{\partial^2 f}{\partial x^{(1)} \partial x^{(d)}} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x^{(d)} \partial x^{(1)}} & \cdots & \frac{\partial^2 f}{\partial x^{(d)} \partial x^{(d)}} \end{pmatrix} (x)$$

The Hessian is the transpose Jacobian of the gradient:

$$\nabla^2 f(x) = \nabla^T [\nabla f(x)]$$

- Vector input x + scalar output f = matrix ∇^2
- If ∇f is differentiable, ∇_f^2 is symmetric

Taylor series

$$f(x \pm h) = \sum_{i=0}^{\infty} \frac{1}{i!} \frac{d^{i}}{dx^{i}} f(x) \cdot (\pm h)^{i}$$

= $f(x) \pm \frac{f'(x)}{1!} h + \frac{f''(x)}{2!} h^{2} \pm \frac{f'''(x)}{3!} h^{3} + \dots$

The a^{th} -order approximation of f at x is a polynomial of degree a. The discrepancy between f and its approximation is the **remainder**. For some $\delta \in [0, 1]$,

$$f(x \pm h) - \sum_{i=0}^{a} \frac{1}{i!} \frac{d^{i} f(x)}{dx^{i}} (\pm h)^{i} = \frac{f^{(a+1)}(x \pm \delta h)}{(a+1)!} (\pm h)^{a+1}$$

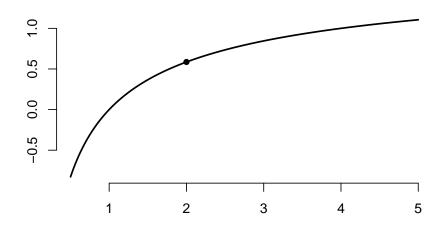
For small $h (h < 1, h \rightarrow 0), h^{a+1} \xrightarrow{a \rightarrow \infty} 0.$

Example: Taylor series for CRRA utility

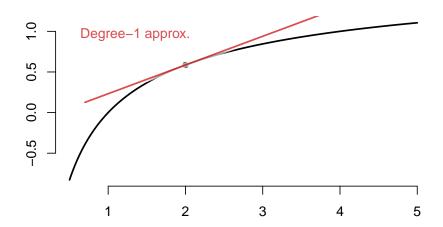
Linear approximation of CRRA utility with risk aversion η :

$$f(x) = \frac{x^{1-\eta}}{1-\eta}, \quad f'(x) = x^{-\eta}, \quad f''(x) = -\eta x^{-\eta-1}, \quad \dots$$

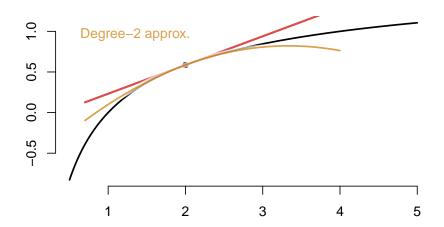
Assume $\eta = 1.5$, approximate f around $x_0 = 2$. $f(2 + h) \approx f(x_0) + f'(x_0)h = 0.59 + 0.35h = P_1(h)$ $\approx P_1(h) + \frac{f''(x_0)}{2!}h^2 = 0.59 + 0.35h - 0.13h^2 = P_2(h)$ $\approx P_2(h) + \frac{f'''(x_0)}{3!}h^3 = 0.59 + 0.35h - 0.27h^2 + 0.06h^3$ $\approx 0.59 + 0.35h - 0.27h^2 + 0.06h^3 - 0.02h^4 \approx ...$



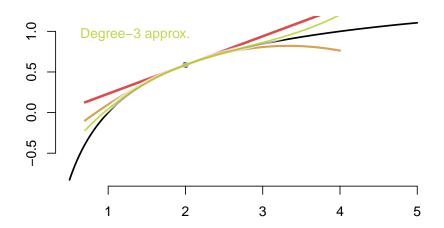
Quick and accurate numerical derivatives. A. V. Kostyrka, Université du Luxembourg, 2024-05-28



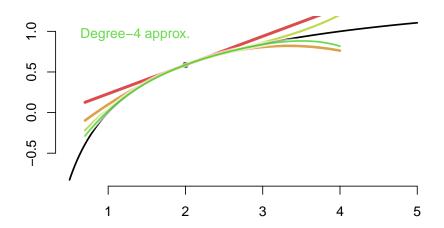
Quick and accurate numerical derivatives. A. V. Kostyrka, Université du Luxembourg, 2024-05-28

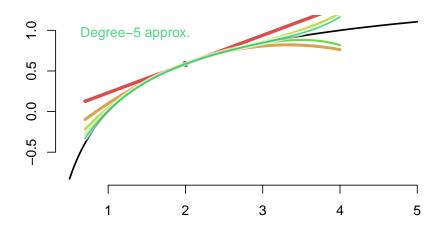


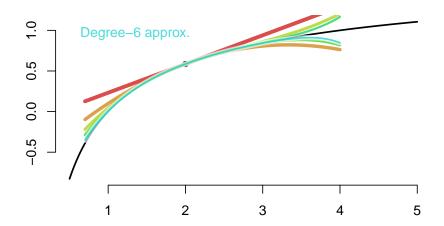
Quick and accurate numerical derivatives. A. V. Kostyrka, Université du Luxembourg, 2024-05-28

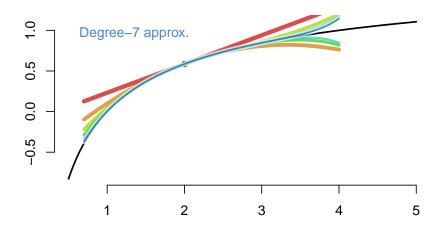


Quick and accurate numerical derivatives. A. V. Kostyrka, Université du Luxembourg, 2024-05-28



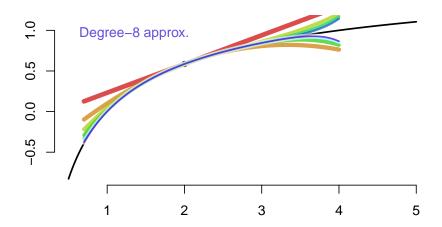






Quick and accurate numerical derivatives. A. V. Kostyrka, Université du Luxembourg, 2024-05-28

Example: CRRA utility visualisation



23 / 69

Reversing the Taylor series

- Knowing many derivative values allows one to approximate the function
- Do the opposite: use the function values to approximate any derivative

Derivatives through Taylor series

$$f(x+h) = f(x) + f'(x)h + \frac{f''(x+\alpha h)}{2}h^2, \quad \alpha \in [0,1]$$

Subtract f(x) and divide by h:

$$\frac{f(x+h)-f(x)}{h} = f'(x) + \frac{f''(x+\alpha h)}{2}h = f'(x) + O(h)$$

Therefore, assuming that f''(x) is uniformly bounded^{*}, $f'(x) = f'_{FD}(x, h) + O(h) \approx f'_{FD}(x, h) + \frac{f''(x)}{2}h$ (for small *h*), and $f'_{FD}(x, h)$ is **first-order-accurate**.

This is the naïve approximation from Slide 15!

^{*} ∃M > 0: sup
$$|f''(x + \alpha h)| \le M < \infty$$
.

Symmetrical differences

To improve the accuracy, consider expansions at $x \pm h$:

$$f(x+h) = f(x) + f'(x)h + \frac{f''(x)}{2}h^2 + \frac{f'''(x+\beta_1h)}{6}h^3, \ \beta_1 \in [0,1]$$
$$f(x-h) = f(x) - f'(x)h + \frac{f''(x)}{2}h^2 - \frac{f'''(x-\beta_2h)}{6}h^3, \ \beta_2 \in [0,1]$$

Subtract (2) from (1):

$$f(x+h) - f(x-h) = 2f'(x)h + \frac{f'''(x+\beta_1h) + f'''(x+\beta_2h)}{6}h^3$$

Divide by 2*h* + generalised intermediate value theorem:

$$\frac{f(x+h) - f(x-h)}{2h} = f'(x) + \frac{f'''(x+\beta h)}{3}h^2, \quad \beta \in [-1,1]$$

Second-order accuracy of derivatives

Central differences are symmetrical around *x*:

$$f'_{CD}(x,h) := \frac{f(x+h) - f(x-h)}{2h}$$

 $f'_{\rm CD}$ is more accurate than $f'_{\rm FD}$:*

•
$$f'(x) - f'_{FD}(x,h) = -\frac{f''(x+\alpha h)}{2}h \approx -\frac{f''(x)}{2}h = O(h)$$

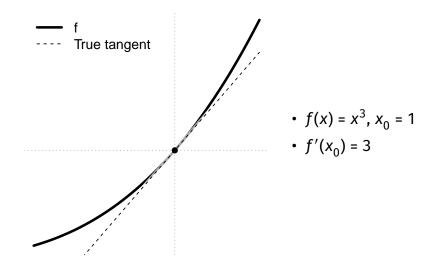
•
$$f'(x) - f'_{CD}(x,h) = -\frac{f'''(x+\beta h)}{6}h^2 \approx -\frac{f'''(x)}{6}h^2 = O(h^2)$$

If f(x) has not been evaluated, computing f'_{FD} and f'_{CD} takes the same amount of time – use f'_{CD} .

If f(x) is already known, CD requires 1 more computation than f'_{FD} , which is 2 times slower – use f'_{FD} for costly f.

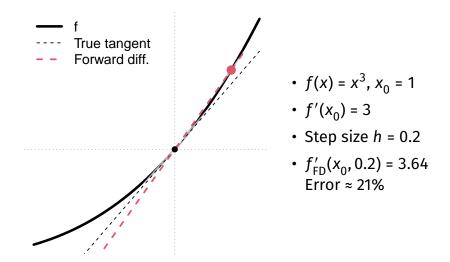
* Assuming f'' and f''' are uniformly bounded.

Graphical illustration of accuracy



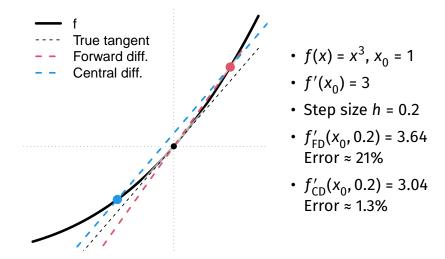
28 / 69

Graphical illustration of accuracy



28 / 69

Graphical illustration of accuracy



Second derivatives via central differences

$$f''(x) := \frac{\mathsf{d}}{\mathsf{d}x}f'(x)$$

Find such a linear combination of f(x - h), f(x), f(x + h) that the coloured terms should cancel out:

$$f(x+h) = f(x) + f'(x)h + \frac{f''(x)}{2}h^2 + \frac{f'''(x)}{6}h^3 + \frac{f'''(x+\gamma_1h)}{24}h^4$$
$$f(x-h) = f(x) - f'(x)h + \frac{f''(x)}{2}h^2 - \frac{f'''(x)}{6}h^3 + \frac{f''''(x-\gamma_2h)}{24}h^4$$

This weighted sum is the solution:

$$f_{CD}''(x,h) := \frac{f(x-h) - 2f(x) + f(x+h)}{h^2}$$

Accuracy of second derivatives

The error order is the same as with f'_{CD} :

$$f''(x) - f''_{\rm CD}(x,h) \approx -\frac{f''''(x)}{12}h^2 = O(h^2)$$

However, the default implementation in many software products is **repeated differences**:

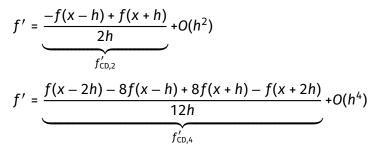
$$f''(x)\approx \frac{f'(x+h)+f'(x-h)}{2h}\approx \frac{f'_{\mathsf{CD}}(x+h)+f'_{\mathsf{CD}}(x-h)}{2h}$$

- Approximating f''(x) via a 3-term f''_{CD} is **faster**: each f'_{CD} takes 2 evaluations
- More accurate with the optimal step size: the h^* that is optimal for f'_{CD} is too small for f''_{CD} (Slide 55)

Quick and accurate numerical derivatives. A. V. Kostyrka, Université du Luxembourg, 2024-05-28

Higher-order accuracy of derivatives

Better accuracy is achievable with more terms in the sum. Carefully choose the coefficients to eliminate the undesirable terms:



For the same *h*, the error of $f'_{CD,4}$ is generally* smaller \Leftrightarrow large *h* for $f'_{CD,4}$ yields the same error as small *h* for $f'_{CD,2}$.

General solution

Stencil: strictly increasing sequence of real numbers: $b_1 < ... < b_n$. (Preferably symmetric around 0 for the best accuracy.) Example: b = (-2, -1, 1, 2).

Derivatives of any order *m* with error $O(h^a)$ may be approximated as weighted sums of *f* evaluated on the **evaluation grid** for that stencil: $x + b_1h, ..., x + b_nh$.

With enough points (n > m), one can find such weights $\{w_i\}_{i=1}^n$ that yield the a^{th} -order-accurate approximation of $f^{(m)}$, where $a \le n - m$:

$$\frac{\mathrm{d}^m f}{\mathrm{d} x^m}(x) = h^{-m} \sum_{i=1}^n w_i f(x+b_i h) + O(h^a)$$

Examples of stencils and weights

•
$$f'_{FD} = \frac{f(x+h)-f(x)}{h} = h^{-1}[-1 \cdot f(x+0h) + 1 \cdot f(x+1h)]$$

• Stencil: $b = (0, 1)$, weights: $w = (-1, 1)$

•
$$f'_{CD} = \frac{f(x+h) - f(x-h)}{2h} = h^{-1} \left[-\frac{1}{2} f(x-h) + \frac{1}{2} f(x+h) \right]$$

• Stencil: b = (-1, 1) (symmetric), weights: $w = (-\frac{1}{2}, \frac{1}{2})$

•
$$f_{CD}'' = \frac{f(x-h)-2f(x)+f(x+h)}{h^2}$$

• Stencil: b = (-1, 0, 1), weights: w = (1, -2, 1)

•
$$f'_{CD,4} = \frac{f(x-2h)-8f(x-h)+8f(x+h)-f(x+2h)}{12h}$$

• Stencil: $b = (-2, -1, 1, 2)$, weights: $w = \left(-\frac{1}{12}, \frac{8}{12}, -\frac{8}{12}, \frac{1}{12}\right)$

Quick and accurate numerical derivatives. A. V. Kostyrka, Université du Luxembourg, 2024-05-28

Example: finite diff. in the new R package

Use fdCoef() to obtain the coefficients that yield an approximation of the m^{th} derivative with error $O(h^a)$ on the **smallest sufficient stencil**.

fdCoef(deriv.order = 2, acc.order = 4)
\$stencil: -2 -1 0 1 2
\$weights: x-2h x-1h x x+1h x+2h
-0.08333 1.33333 -2.50000 1.33333 -0.08333

Arbitrary stencils are supported; the resulting coefficients yield the **maximum attainable accuracy**:

Numerical Hessians via central differences

Let
$$h_i := (0 \dots 0 \underbrace{h}_{i} 0 \dots 0)'$$
 and $x_{+-} := x + h_i - h_j$.

4 evaluations of f are required to approximate $\nabla_{ij}^2 f$ via CD:

$$\nabla_{ij}^{2} f(x) := \left[\nabla^{\mathsf{T}} (\nabla f(x)) \right]_{ij} := \nabla_{ij,\mathsf{CD}}^{2} f(x) + O(h^{2}) = \\ = \frac{f(x_{++}) - f(x_{-+}) - f(x_{+-}) + f(x_{--})}{4h^{2}} + O(h^{2})$$

- The 4-term sum is as **fast** as the 4-term $\frac{\nabla_i f(x+h_j) \nabla_i f(x-h_j)}{2h_j}$ but guaranteed to be **symmetric**: $\hat{\nabla}_{ij,CD}^2 = \hat{\nabla}_{ii,CD}^2$
 - Symmetric repeated differences require 8 terms
- Accuracy implications are being investigated

Efficient parallelisation of gradients

Example: $\nabla f(x)$, dim x = 3, stencil b = (-2, -1, 1, 2) for 4th-order accuracy, same step size h. Total: 12 evaluations.

- Create a list of length 12 containing $x + b_i h_i$
- Apply f in parallel to the list items, assemble $\{\{f(x + b_j h_i)\}_{i=1}^3\}_{j=1}^4$ in a matrix
- Compute weighted row sums

Error sources in numerical derivatives

Floating-point arithmetic

Computers convert inputs into 1's and 0's for processing.

Real numbers can be written with an **integer** mantissa (=significant digits) and an **integer** exponent (=magnitude):

1.8125 =
$$18125 \cdot 10^{-4}$$

integer base mantissa

The number 18.125 has the same mantissa and a different exponent (-3). To multiply by 10 (the base), move the decimal point: $1.8125 \cdot 10 = 18.125$.

Such numbers are called **floating-point numbers**.

Quick and accurate numerical derivatives. A. V. Kostyrka, Université du Luxembourg, 2024-05-28

Available precision on 64-bit machines

Computing the number from bits:

$$(-1)^{\text{sign}} \cdot (1.\text{significand}) \cdot 2^{\text{exponent}-2^{10}+1} =$$

= 1.753198 \cdot 2^{1037-1023} = 28724.4

- 64-bit FP numbers represent $5 \cdot 10^{-324} \dots 2 \cdot 10^{308}$
- Are 64-bit calculations relatively accurate up to 10^{-323} ? No, only to $1/2^{52} = 2.2 \cdot 10^{-16}$!
- Precision beyond ≈16 decimal significant digits is lost

Computers have terrible precision

- Machine epsilon (ϵ_m): maximum relative step between two representable numbers, or $\epsilon_m := 2^{-52} \approx 2.2 \cdot 10^{-16}$
 - If $x = 2^{i}$ for integer *i*, the mantissa is 52 zeros: 000...000; when the least significant bit is flipped from 0 to 1, the mantissa becomes 000...001, and $x \mapsto (1 + \epsilon_{m})x$

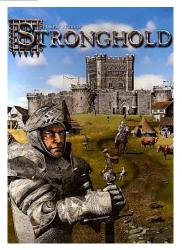
lm(formula = mpg ~ disp, data = mtcars)

Coef:	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	29.599855	1.229720	24.070	< 2e-16 ***
disp	-0.041215	0.004712	-8.747	9.38e-10 ***

- Rounding errors (e.g. if numbers have different orders of magnitude), catastrophic cancellation, ill conditioning (high sensitivity to small input errors)
- Input errors, user mistakes, programmer and hardware bugs purgamenta intrant, purgamenta exeunt

Example: low bit rates in early software

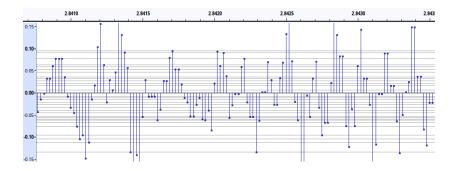
1993, **8-bit** audio, 11 025 Hz sampling



2001, **4-bit** audio, 44 100 Hz sampling

Quick and accurate numerical derivatives. A. V. Kostyrka, Université du Luxembourg, 2024-05-28

Example: 8-bit audio in the 1990s



The vertical position of the wave can take any of the 2^8 = 256 values; 1 point = 1 byte.

11 025 Hz = 11 kilobytes per second of audio.

Quick and accurate numerical derivatives. A. V. Kostyrka, Université du Luxembourg, 2024-05-28

Finite precision in digital data

- The vertical position of the sound wave intensity is digitally encoded as a number on a fixed grid:
 - 4 bits $\Rightarrow 2^4 = 16$ positions (very coarse)
 - 8 bits $\Rightarrow 2^8 = 256$ positions (coarse)
 - 16 bits $\Rightarrow 2^{16} = 65536$ positions (CD quality)
- 64-bit FP numbers use a similar grid to allow
 ⇒ 2⁶⁴ ≈ 1.8 · 10¹⁹ numbers on the entire real line
 - The amount of annual Internet traffic is > 10²¹ bytes already not enough even with positive integers
 - One is limited to 64 bits per number unless they use special libraries for arbitrary-precision arithmetic at the cost of extra memory and speed: GMP, MPFR...

Graphical representation of FP accuracy

- Intervals [1, 2], [2, 4], [4, 8], ... are cut into $2^{52} \approx 4.5 \cdot 10^{15}$ equal intervals; all numbers are snapped to the edges
- The gap between two representable numbers is proportional to the number magnitude
 - The rounding error is **proportional** to the number
 - Relative rounding error range: $[0 \dots 1.1 \cdot 10^{-16}]$
- Caution: round(3.5) = 4, but round(4.5) = 4 due to rounding towards the nearest *even* number
 - Worst case: the 1992 precision loss in the Patriot missile control system ⇒ 28 soldiers died to a Scud missile

Insufficient precision example

a = 2^52 # 4 503 599 627 370 496, 1/macheps b = a + 0.4 c = b + 0.3 d = c + 0.3

d - a # Question: is equal to what?

Answer: zero. (At least in FP64 precision.)

- The next number after 2^{52} representable by the machine is $2^{52} + 1$
- Everything less than 2^{52} + 0.5 is rounded down to 2^{52}
 - Sort the inputs or use Kahan's compensated summation to extend the precision
 - But 2⁵²⁺⁰.3+0.3+0.3+0.3+0.3+0.3+... = 2^{52!}
- + Max. rel. error: $\epsilon_{\rm m}/2$, max. abs. error: $|y|\cdot\epsilon_{\rm m}/2$

Quick and accurate numerical derivatives. A. V. Kostyrka, Université du Luxembourg, 2024-05-28

Base-conversion precision loss example

Only finite sums of integer powers of 2 up to 2⁵² are stored losslessly in computer memory:

 $1/2 = 0.5_{10} = 0.1_{2} - \text{fine.}$ $4/5 = 0.8_{10} = 0.1100 \ 1100 \ \dots_{2} = 0.\overline{1100}_{2} - \text{infinite period.}$ With 52 bits, one can represent only $0.[1100] \ 1100 = 0.8 - 2 \cdot 10^{-16} \text{ or}$ $0.[1100] \ 1101 = 0.8 + 4 \cdot 10^{-17}.$

If 0.8 is saved as a number, it is read back as a **different** one: print(0.8, 20) # 0.80000000000004441.

Real case #1: numerical derivative failure

- An economist is modelling some variable Y that is linear in the GDP: Y := 1 · GDP + g(...) + U
 - $\partial \mathbb{E}(Y \mid ...) / \partial GDP = 1$, but they use numerical derivatives
- Lux GDP is 80 bn € ⇒ the gap between two representable numbers is 8 · 10¹⁰/2⁵² ≈ 1.7 · 10⁻⁵
- Step size: 10^{-8} (from the literature)

$$\nabla_{GDP} Y \Big|_{GDP_{Lux}} \approx \frac{[8 \cdot 10^{10} + 10^{-8}] - 8 \cdot 10^{10}}{10^{-8}}$$

- $[8 \cdot 10^{10} + 10^{-8}] = 8 \cdot 10^{10}$ because $10^{-8} < \frac{1}{2} \cdot 1.7 \cdot 10^{-5}$ \Rightarrow the numerator is zero (cf. Slide 16 plot)
 - Error: the computer returns $\partial Y / \partial GDP = 0$ instead of 1!

Real case #2: catastrophic cancellation

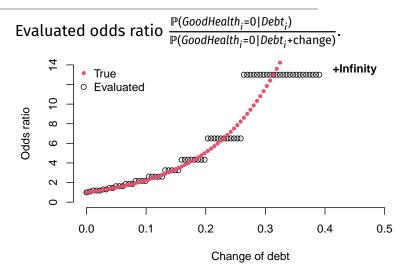
The causal effect of a 1-euro debt change on the probability of self-reported good health condition (GH) in the probit model $\mathbb{P}(GH = 1 \mid Debt, ...) = \Phi(\gamma_0 Debt + ...)$:

$$\frac{\partial \mathbb{P}(GH_i = 1)}{\partial Debt_i} \approx \frac{\Phi(\hat{\gamma}(Debt_i + 0.001) + ...) - \Phi(\hat{\gamma}Debt_i + ...)}{0.001}$$

If the argument of $\Phi(\cdot)$ is too large, probabilities close to 1 are predicted. If $\hat{\gamma} \cdot Debt_i + \ldots = 8.3$, the relative error of $\frac{\partial \mathbb{P}(GH_i=0)}{\partial Debt_i}$ can be $\approx 17\%$.

Consequence: the error of the odds ratio is unbounded.

Illustration of catastrophic cancellation



Probit breaks at $X'\beta$ = 8.3; logit breaks at $X'\beta$ = 36.8.

Quick and accurate numerical derivatives. A. V. Kostyrka, Université du Luxembourg, 2024-05-28

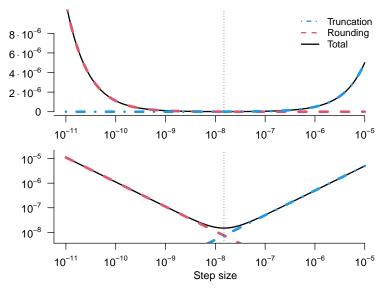
Total error in numerical derivatives

Step size selection is critical for accuracy:

- *h* too large → large truncation error from the truncated Taylor-series term (poor mathematical approximation)
- *h* too small \rightarrow large **rounding error** (poor **numerical** approximation): catastrophic cancellation, division of something small by something small, machine accuracy always limited by $\epsilon_{\rm m}$

Finding the optimal h^* to balance these two errors is possible.

Visualisation of the error components



50 / 69

Total error function properties

On the log-log scale,

- The slope of the left branch is the differentiation order m (times -1)
 - The rounding error of the difference is divided by h^m
- The slope of the right branch is the accuracy order a
 - The truncation error is approximately f''.../a! times h^a

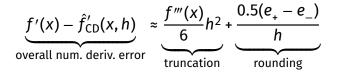
Analytical error bounds for central diff.

Computing *f* results in a rounding error:

$$f(x+h) := \hat{f}_{FP64}(x+h) + e_+, \quad f(x-h) := \hat{f}_{FP64}(x-h) + e_-$$

$$\begin{bmatrix} f(x+h) - f(x-h) \end{bmatrix} - \begin{bmatrix} \hat{f}_{\text{FP64}}(x+h) - \hat{f}_{\text{FP64}}(x-h) \end{bmatrix} = e_{+} - e_{-}$$

true difference computer evaluation



Rounding-error numerator bound:*

 $|e_{+} - e_{-}| \le |e_{+}| + |e_{-}| \le 2 \max\{|e_{+}|, |e_{-}|\} = |f(x)|\epsilon_{m}$

* f(x + h), f(x - h) must have the same magnitude (binary exponent).

Total-error function: conservative absolute bound (after several harmless simplifications).

$$E_{CD}(x,h) := \frac{|f'''(x)|}{6}h^2 + 0.5|f(x)|\epsilon_m h^{-1}$$
$$E_{FD}(x,h) := \frac{|f''(x)|}{2}h + |f(x)|\epsilon_m h^{-1}$$

Optimal step sizes that minimise it:

$$h_{CD}^{*} = \sqrt[3]{\frac{1.5|f(x)|}{|f'''(x)|}} \epsilon_{m}, \qquad h_{FD}^{*} = \sqrt{\frac{2|f(x)|}{|f''(x)|}} \epsilon_{m}$$

Therefore, $h_{\rm CD}^* \propto \epsilon_{\rm m}^{1/3}$ and $h_{\rm FD}^* \propto \epsilon_{\rm m}^{1/2}$ (machine-dependent).

53

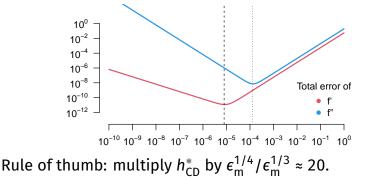
General step-size selection

Result: *a*th-order-accurate *m*th numerical derivatives have:

- Optimal step size $h_* \propto \sqrt[a+m]{\epsilon_m}$
- Approximation error $\propto \epsilon_m^{a/(a+m)} \propto h_*^a \propto \epsilon_m/h_*^m$ with equal order of truncation and rounding components
 - The total error at the optimal h^* is $O(\epsilon_m^{1/2})$ for one-sided and $O(\epsilon_m^{2/3})$ for central differences
 - In 64-bit precision, f'_{FD} is accurate only to ≈7–8 decimal digits, and f'_{CD} to ≈10–11 digits **at most**
 - Second derivatives and Hessians: $h_{\rm CD}^{**} \propto \epsilon_{\rm m}^{1/4}$
 - 4th-order-accurate CD: $h_{\text{CD},4}^* \propto \epsilon_{\text{m}}^{1/5}$ (≈12–13 digits)
- Hard limit: impossible to have > 16 accurate decimal places on 64-bit machines without extra effort

Is repeated differencing dangerous?

Options for
$$f''(x)$$
: $\frac{f(x-h)-2x+f(x+h)}{h^2}$ or $\frac{f'_{CD}(x+h)-f'_{CD}(x-h)}{2h}$.
Surprisingly, both have the same maximum attainable accuracy, $O(\epsilon_m^{1/2})$ (7–8 digits). However, using $h^*_{CD} \propto \epsilon_m^{1/3}$ results in an $O(\epsilon_m^{1/3})$ error, i. e. only 5–6 accurate digits!



Approaches to step size selection

Paradigms for step-size search

- 1. Theoretical (plug-in expressions)
- 2. Empirical (finding the minimum of the total error)

My package, pnd, provides multiple algorithms (currently under active feature implementation and testing).

Analogy: Silverman's rule-of-thumb bandwidth vs. data-driven cross-validated bandwidth in non-parametric econometrics.

Using plug-in higher-order estimates

Since the optimal h^* for f'_{CD} depends on the true f''',

- 1. Compute $f_{CD}''(x, \tilde{h})$ using any reasonable $\tilde{h} \propto \epsilon_m^{1/5}$ (e.g. naïve values 0.001 or 0.001x)
- 2. Compute $\hat{h}_{CD}^* = \sqrt[3]{1.5|f(x)|\epsilon_m/|f_{CD}^{'''}(x,\tilde{h})|}$
 - Dumontet–Vignes (1977) proposed an iterative search algorithm for a reliable \tilde{h}
 - Works for any orders *m* and *a*: take $\tilde{h} \propto \epsilon_{\rm m}^{1/(a+m)}$
 - Reassemble the available values of f on $(\pm h, \pm 2h)$ into a 4^{th} -order-accurate $f'_{\text{CD},4}$

Grad(func = CRRA, x = 2, h = "plugin", h0=0.01) Grad(func = CRRA, x = 2, h = "DV")

Controlling the error ratio

Curtis & Reid (1974) proposed choosing such h that

 $\frac{\text{truncation error } e_{\text{t}}}{\text{rounding error } e_{\text{r}}} \in [10, 1000] \quad (\text{aim for 100})$

Estimate the truncation and rounding errors separately:

•
$$\hat{e}_{t}(x,h) = |f'_{CD}(x,h) - f'_{FD}(x,h)|$$

• $\hat{e}_{t} = O(h)$ is too conservative because $e_{t} = O(h^{2})$
• $\hat{e}_{r}(x,h) = \frac{0.5|f(x)|\epsilon_{m}}{h}$

Since \hat{e}_t is over-estimated, this aim ensures that $e_t \approx e_r$. Grad(func = CRRA, x = 2, h = "CR")

Controlling the error ratio, improved

The Curtis & Reid (1974) approach can be improved:

- Larger stencil + parallel evaluations = more accurate truncation estimate
 - 3 \rightarrow 4 evaluations; modern machines have 4+ cores
 - I propose and solve a system of equations for better estimates of $e_{\rm t}$ with 4 or more evaluations
 - Eliminates the need for the *ad hoc* inflated target
- For f'_{CD} , e_t/e_r at the optimum is 0.5, not 1
- With 4 evaluations, $f'_{\rm CD}$ can be computed from existing values \Rightarrow multiply the aim by $\epsilon_{\rm m}^{-2/15} \approx 120$

Grad(func = CRRA, x = 2, h = "CRm")
Grad(func = CRRA, x = 2, h = "CRm", acc.order = 4)

Controlling the truncation-branch slope

Stepleman & Winarsky (1979) and Mathur (2012) proposed similar algorithms based on the idea of descending down the right slope of the estimated truncation error:

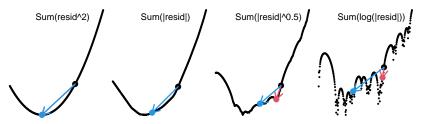
- The slope of the right branch of the total error is a
- Choose a large enough h_0 , set $h_1 = 0.5h_0$, get the truncation error estimate $\hat{e}_t(x) = \frac{f'_{CD}(x,h_1) f'_{CD}(x,h_0)}{1 0.5^2}$
- Continue shrinking while the slope of \hat{e}_t is $\approx a$, stop when it deviates due to the substantial round-off error
 - Never deals with the indeterminable round-off

Noisy functions

Noisy function: many local optima and strong abrupt changes of curvature.

In optimisation, accurate derivatives of noisy function are useless (local features obscure global optima).

Although $h_{CD}^* = \sqrt[3]{1.5|f/f'''|\epsilon_m} \propto 1/f'''$, use **larger** step sizes to guess a better trend.



Quick and accurate numerical derivatives. A. V. Kostyrka, Université du Luxembourg, 2024-05-28

Relative or absolute step?

- The optimal step size, $h_{CD}^* = \sqrt[3]{\epsilon_m \cdot 1.5|f(x)/f'''(x)|}$, depends on the value of x only through f(x)/f'''(x)
- However, **relative step** $x \cdot h_{CD}^*$ is often used to eliminate the problems of **units of measurement** for large |x|
 - If $x = 10^{12}$ and $\tilde{h} = 10^{-4}$, argument-representation errors appear: $|[x + \tilde{h}]_{FP64} - (x + \tilde{h})| = 2 \cdot 10^{-5} \neq 0$ (Slide 44)
 - If $x = 10^{-5}$ and $\tilde{h} = 10^{-4}$, $x \tilde{h} < 0$; bad if dom $f = \mathbb{R}^{++}$: log x, \sqrt{x} ... (Slide 4)
- The magnitude of x may be informative of the curvature change, f'''(x)
- Common practice: choose $x_{\min} = 10^{-5}$; for $|x| < x_{\min}$, use step size \tilde{h} and for $|x| \ge x_{\min}$, use step size $|x|\tilde{h}$
 - Helps only with large x, not small x such that $|f'''(x)| \gg 0$

Showcase of the new package

Finding approximations via interpolation

To calibrate η , you run thousands of simulations and compute the goodness of fit $f(\eta)$. You get $\eta = (0.1, 0.2, 0.4, 0.8, 0.9), f(\eta) = (0.2, 0.4, 0.5, 0.8, 0.7),$ but you want to guess f and f' around $\eta_0 = 2/3$.

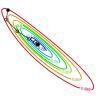
fdCoef(0, stencil = (n - n0))\$weights %*% f
fdCoef(1, stencil = (n - n0))\$weights %*% f

Weights for f: $(0.23, -0.56, 0.69, 0.98, -0.34) \Rightarrow f(2/3) \approx 0.71.$ Weights for f': $(-1.36, 3.51, -5.40, 3.30, -0.05) \Rightarrow f'(2/3) \approx 1.04.$

53 / 69

Computing gradients for optimisation

Smoothed empirical likelihood with missing endogenous variables (Cosma, Kostyrka, Tripathi, 2024). Problem: maximising SEL + computing ∇²-based std. errors via BFGS on 4 CPU cores.



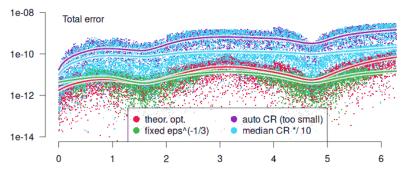
Method	Ord.	Time, s	∥ ∇SEL∥	Evals	Iters
built-in	2	21+3.8	$3.6 \cdot 10^{-4}$	46	10
new	2	13+1.5	2.1 · 10 ^{−7}	37	10
new	4	16+2.9	3.3 · 10 ^{−8}	32	10

Sensitivity of the error to the step size

Choosing a *slightly* sub-optimal step size is not as scary.

Example: for sin x, the optimal step size is $\propto \tan x$, which is unbounded – a fixed small h can work fine, too.

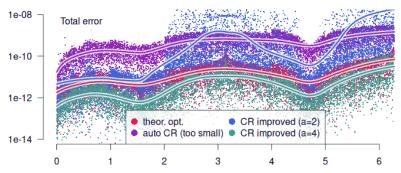
Or simply take the median of $f'_{CD}(x, \cdot)$ with $h \cdot 0.1, h, h \cdot 10$.



Quick and accurate numerical derivatives. A. V. Kostyrka, Université du Luxembourg, 2024-05-28

Improvements for the CR algorithm

- Estimate the correct truncation error order with
 4 parallel evaluations and using the correct target ratio
- 2. Obtain $f'_{CD,4}$ with algorithmically chosen $h^*_{CD,2}$ times 120
 - \approx 3 times more accurate than theoretical



Quick and accurate numerical derivatives. A. V. Kostyrka, Université du Luxembourg, 2024-05-28

66 /

Demonstrations for another time

- Computing marginal effects in highly non-linear computationally heavy models with big data
- Computing accurate standard errors in conditional-volatility models (no more NaN in GARCH!)
- Choosing the optimal step size for complex multi-dimensional maximisation
- Handling *f* that are not accurate to the last digit

Practical recommendations

Do not:

- Trust the built-in numerical differences
 - Especially the step size
- Fix h = 0.01 because it 'feels right' / you interpret a 1-cent change
- Use FD when evaluating *f* is fast
- Believe that computers cannot be arbitrarily wrong

Do:

- Use all CPU cores
- Use optimal-step search or simply $h = \epsilon_m^{1/(a+m)}$
- For higher *m*, increase *a* to have the error $O(\sqrt{\epsilon_m})$
- Start gradient-based optimisation with a parallel CD2 gradient, restart with CD4
 - If no change, retrace towards x_{start} a bit

Further work

- Finish the formal part, test the suggested algorithm improvements
- Test the default parameters and upload the R package to CRAN as pnd
 - Currently under actively development on github.com/Fifis/pnd
- Add memoisation to reuse the cached evaluations in optimisation routines
- Add facilities to compute higher-order-accurate derivatives from previous candidate step sizes
- Implement complex derivatives